scholarly journals Identification of a FLG-wide-type bladder cancer subtype with poor prognosis and prediction use in immune checkpoint

Author(s):  
Liang Chen ◽  
Liulin Xiong ◽  
Weinan Chen ◽  
Lizhe An ◽  
Huanrui Wang ◽  
...  

Abstract Background Bladder cancer (BLCA) is one of most common urinary tract malignant tumor and immunotherapy have generated a great deal of interest in BLCA. Immune checkpoint blockade (ICB) therapy has significantly progressed the treatment of BLCA. Multiple studies have suggested that specific genetic mutations may serve as immune biomarkers for ICB therapy. Objective In this study, we aimed to investigate the role of mutations genes and subtypes in prognosis and immune checkpoint prediction in BLCA. Method Mutation information and expression profiles were acquired from The Cancer Genome Atlas (TCGA) database. Integrated bioinformatics analysis was carried out to explore the mutation genes of BLCA. Functional enrichment analysis Gene Ontology (GO) and Gene set enrichment analysis (GSEA) was conducted. The infiltrating immune cells and the prediction of ICB between different subtypes group were explored using immuCellAI algorithm. Results The mutation genes Filaggrin (FLG) gene were identified. Following the study on its subtypes and functional enrichment analysis, Sub2 of FLG-wide type was found to have relationships with poor prognosis and immune infiltration BLCA. What’s more, Sub2 of FLG-wide type may be used as a biomarker to predict the prognosis of BLCA patients receiving ICB. Conclusion This research provides a new basis and ideas for guiding the clinical application of BLCA immunotherapy.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Yumei Qi ◽  
Yo-Liang Lai ◽  
Pei-Chun Shen ◽  
Fang-Hsin Chen ◽  
Li-Jie Lin ◽  
...  

AbstractCervical cancer is the fourth most common cancer in women worldwide. Increasing evidence has shown that miRNAs are related to the progression of cervical cancer. However, the mechanisms that affect the prognosis of cancer are still largely unknown. In the present study, we sought to identify miRNAs associated with poor prognosis of patient with cervical cancer, as well as the possible mechanisms regulated by them. The miRNA expression profiles and relevant clinical information of patients with cervical cancer were obtained from The Cancer Genome Atlas (TCGA). The selection of prognostic miRNAs was carried out through an integrated bioinformatics approach. The most effective miRNAs with synergistic and additive effects were selected for validation through in vitro experiments. Three miRNAs (miR-216b-5p, miR-585-5p, and miR-7641) were identified as exhibiting good performance in predicting poor prognosis through additive effects analysis. The functional enrichment analysis suggested that not only pathways traditionally involved in cancer but also immune system pathways might be important in regulating the outcome of the disease. Our findings demonstrated that a synergistic combination of three miRNAs may be associated, through their regulation of specific pathways, with very poor survival rates for patients with cervical cancer.


2020 ◽  
Author(s):  
Gaochen Lan ◽  
Xiaoling Yu ◽  
Yanna Zhao ◽  
Jinjian Lan ◽  
Wan Li ◽  
...  

Abstract Background: Breast cancer is the most common malignant disease among women. At present, more and more attention has been paid to long non-coding RNAs (lncRNAs) in the field of breast cancer research. We aimed to investigate the expression profiles of lncRNAs and construct a prognostic lncRNA for predicting the overall survival (OS) of breast cancer.Methods: The expression profiles of lncRNAs and clinical data with breast cancer were obtained from The Cancer Genome Atlas (TCGA). Differentially expressed lncRNAs were screened out by R package (limma). The survival probability was estimated by the Kaplan‑Meier Test. The Cox Regression Model was performed for univariate and multivariate analysis. The risk score (RS) was established on the basis of the lncRNAs’ expression level (exp) multiplied regression coefficient (β) from the multivariate cox regression analysis with the following formula: RS=exp a1 * β a1 + exp a2 * β a2 +……+ exp an * β an. Functional enrichment analysis was performed by Metascape.Results: A total of 3404 differentially expressed lncRNAs were identified. Among them, CYTOR, MIR4458HG and MAPT-AS1 were significantly associated with the survival of breast cancer. Finally, The RS could predict OS of breast cancer (RS=exp CYTOR * β CYTOR + exp MIR4458HG * β MIR4458HG + exp MAPT-AS1 * β MAPT-AS1). Moreover, it was confirmed that the three-lncRNA signature could be an independent prognostic biomarker for breast cancer (HR=3.040, P=0.000).Conclusions: This study established a three-lncRNA signature, which might be a novel prognostic biomarker for breast cancer.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Xiang Qian ◽  
Zhuo Chen ◽  
Sha Sha Chen ◽  
Lu Ming Liu ◽  
Ai Qin Zhang

The study aimed to clarify the potential immune-related targets and mechanisms of Qingyihuaji Formula (QYHJ) against pancreatic cancer (PC) through network pharmacology and weighted gene co-expression network analysis (WGCNA). Active ingredients of herbs in QYHJ were identified by the TCMSP database. Then, the putative targets of active ingredients were predicted with SwissTargetPrediction and the STITCH databases. The expression profiles of GSE32676 were downloaded from the GEO database. WGCNA was used to identify the co-expression modules. Besides, the putative targets, immune-related targets, and the critical module genes were mapped with the specific disease to select the overlapped genes (OGEs). Functional enrichment analysis of putative targets and OGEs was conducted. The overall survival (OS) analysis of OGEs was investigated using the Kaplan-Meier plotter. The relative expression and methylation levels of OGEs were detected in UALCAN, human protein atlas (HPA), Oncomine, DiseaseMeth version 2.0 and, MEXPRESS database, respectively. Gene set enrichment analysis (GSEA) was conducted to elucidate the key pathways of highly-expressed OGEs further. OS analyses found that 12 up-regulated OGEs, including CDK1, PLD1, MET, F2RL1, XDH, NEK2, TOP2A, NQO1, CCND1, PTK6, CTSE, and ERBB2 that could be utilized as potential diagnostic indicators for PC. Further, methylation analyses suggested that the abnormal up-regulation of these OGEs probably resulted from hypomethylation, and GSEA revealed the genes markedly related to cell cycle and proliferation of PC. This study identified CDK1, PLD1, MET, F2RL1, XDH, NEK2, TOP2A, NQO1, CCND1, PTK6, CTSE, and ERBB2 might be used as reliable immune-related biomarkers for prognosis of PC, which may be essential immunotherapies targets of QYHJ.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0246668
Author(s):  
Lihua Cai ◽  
Honglong Wu ◽  
Ke Zhou

Identifying biomarkers that are associated with different types of cancer is an important goal in the field of bioinformatics. Different researcher groups have analyzed the expression profiles of many genes and found some certain genetic patterns that can promote the improvement of targeted therapies, but the significance of some genes is still ambiguous. More reliable and effective biomarkers identification methods are then needed to detect candidate cancer-related genes. In this paper, we proposed a novel method that combines the infinite latent feature selection (ILFS) method with the functional interaction (FIs) network to rank the biomarkers. We applied the proposed method to the expression data of five cancer types. The experiments indicated that our network-constrained ILFS (NCILFS) provides an improved prediction of the diagnosis of the samples and locates many more known oncogenes than the original ILFS and some other existing methods. We also performed functional enrichment analysis by inspecting the over-represented gene ontology (GO) biological process (BP) terms and applying the gene set enrichment analysis (GSEA) method on selected biomarkers for each feature selection method. The enrichments analysis reports show that our network-constraint ILFS can produce more biologically significant gene sets than other methods. The results suggest that network-constrained ILFS can identify cancer-related genes with a higher discriminative power and biological significance.


2021 ◽  
Vol 11 ◽  
Author(s):  
Lucas Maciel Vieira ◽  
Natasha Andressa Nogueira Jorge ◽  
João Batista de Sousa ◽  
João Carlos Setubal ◽  
Peter F. Stadler ◽  
...  

BackgroundColorectal cancer (CRC) is a heterogeneous cancer. Its treatment depends on its anatomical site and distinguishes between colon, rectum, and rectosigmoid junction cancer. This study aimed to identify diagnostic and prognostic biomarkers using networks of CRC-associated transcripts that can be built based on competing endogenous RNAs (ceRNA).MethodsRNA expression and clinical information data of patients with colon, rectum, and rectosigmoid junction cancer were obtained from The Cancer Genome Atlas (TCGA). The RNA expression profiles were assessed through bioinformatics analysis, and a ceRNA was constructed for each CRC site. A functional enrichment analysis was performed to assess the functional roles of the ceRNA networks in the prognosis of colon, rectum, and rectosigmoid junction cancer. Finally, to verify the ceRNA impact on prognosis, an overall survival analysis was performed.ResultsThe study identified various CRC site-specific prognosis biomarkers: hsa-miR-1271-5p, NRG1, hsa-miR-130a-3p, SNHG16, and hsa-miR-495-3p in the colon; E2F8 in the rectum and DMD and hsa-miR-130b-3p in the rectosigmoid junction. We also identified different biological pathways that highlight differences in CRC behavior at different anatomical sites, thus reinforcing the importance of correctly identifying the tumor site.ConclusionsSeveral potential prognostic markers for colon, rectum, and rectosigmoid junction cancer were found. CeRNA networks could provide better understanding of the differences between, and common factors in, prognosis of colon, rectum, and rectosigmoid junction cancer.


2020 ◽  
Author(s):  
Jian Lei ◽  
Zhen-Yu He ◽  
Jun Wang ◽  
Min Hu ◽  
Ping Zhou ◽  
...  

Abstract BackgroundTo investigate the potential molecular mechanism of ovarian cancer (OC) evolution and immunological correlation using the integrated bioinformatics analysis.MethodsData from the Gene Expression Omnibus (GEO) was used to gain differentially expressed genes (DEGs). Gene Ontology (GO) and Kyoto Encyclopedia of Gene and Genome (KEGG) pathway analysis were completed by utilizing the Database for Annotation, Visualization, and Integrated Discovery (DAVID). After multiple validation via The Cancer Genome Atlas (TCGA), Gene Expression Profiling Interactive Analysis 2 (GEPIA 2), the Human Protein Atlas (HPA) and Kaplan-Meier (KM) plotter, immune logical relationships of the key gene SOBP were evaluated based on Tumor Immune Estimation Resource (TIMER), and Gene Set Enrichment Analysis (GSEA) software. Finally, the lncRNAs-miRNAs-mRNAs sub-network was predicted by starBase, Targetscan, miRBD, and LncBase, individually. Correlation of expression and prognosis for mRNAs, miRNAs and lncRNAs were confirmed by TCGA, GEPIA 2, starBase, and KM.ResultsA total of 192 shared DEGs were discovered from the four data sets, including 125 upregulated and 67 downregulated genes. Functional enrichment analysis presented that they were mainly enriched in cartilage development, pathway in PI3K-Akt signaling pathway. Lower expression of SOBP was the independent prognostic factor for inferior prognosis in OC patients. Intriguingly, downregulated SOBP enhanced the infiltration levels of B cells, CD8+ T cells, Macrophage, Neutrophil and Dendritic cells. GSEA also disclosed low SOBP showed significantly association with the activation of various immune-related pathways. Finally, we firstly reported that MEG8-miR378d-SOBP axis was linked to development and prognosis of ovarian cancer through regulating cytokines pathway.Conclusions Our study establishes a novel MEG8-miR378d-SOBP axis in the development and prognosis of OC, and the triple sub-network probably affects the progression of ovarian tumor by regulating cytokines pathway.


Author(s):  
Lecai Xiong ◽  
Yuquan Bai ◽  
Minglin Zhu ◽  
Zetian Yang ◽  
Jinping Zhao ◽  
...  

Lung cancer predominates in cancer-related deaths worldwide, with lung adenocarcinoma (LUAD) being a common histological subtype of lung cancer. The aim at this study was to search for biomarkers associated with the progression and prognosis of LUAD. We have integrated the expression profiles of 1174 lung cancer patients from five GEO datasets (GSE18842, GSE19804, GSE30219, GSE40791 and GSE68465) and identified a set of differentially expressed genes. Functional enrichment analysis showed that these genes are closely related to the progression of LUAD, such as cell cycle, mitosis and adhesion. Cytoscape software was used to establish a protein-protein interaction (PPI) network to analyze important modules using Molecular Complex Detection (MCODE), and finally CCNB1, BUB1B and TTK were selected for further study. The study found that compared with non-tumor lung tissue, CCNB1, BUB1B and TTK are highly expressed in LUAD. Kaplan-Meier analysis showed that CCNB1, BUB1B and TTK were negatively correlated with the overall survival and disease-free survival of patients. Gene set enrichment analysis (GSEA) demonstrated that for the samples of any hub gene highly expressed, most of the functional gene sets enriched in cell cycle. In summary, CCNB1, BUB1B and TTK can be used as biomarkers of poor prognosis of LUAD. The high expression of CCNB1, BUB1B and TTK can accelerate the progression of LUAD and lead to shorter survival, suggesting that they may be potential targets for treatment in LUAD.


2021 ◽  
Vol 8 ◽  
Author(s):  
Ziwen Zhang ◽  
Han Zhang ◽  
Dongbo Li ◽  
Xiaoping Zhou ◽  
Jinlu Wang ◽  
...  

Background: Long noncoding RNA (lncRNA) ST7-AS1 can be observed in various cancers, but its role in breast cancer (BRC) remains unclear. Our aim is to, on the basis of The Cancer Genome Atlas (TCGA) database, prove the correlation between lncRNA ST7-AS1 and BRC.Methods: The lncRNA ST7-AS1 expression and its roles in the prognosis of BRC were explored using data from the TCGA database. The expression level of lncRNA ST7-AS1 in BRC samples was detected using RT-PCR. The 1-, 3-, or 5-year survival rate was predicted using a nomogram established through Cox proportional hazard regression. At last, the biological function was explored through gene ontology (GO) analysis and gene set enrichment analysis (GSEA). The hallmark pathways significantly involved in hub genes were described through functional enrichment analysis. The correlation between lncRNA ST7-AS1 expression and immune infiltration was analyzed through single-sample GSEA (ssGSEA).Results: LncRNA ST7-AS1 expression was downregulated in BRC. Decreased lncRNA ST7-AS1 expression in BRC was correlated with advanced clinical pathologic characteristics (high grade, histological type, age, menopause status, and HER2 status), survival time, and poor prognosis. The nomogram was established for using lncRNA ST7-AS1 to predict 1-, 3-, or 5-year survival in patients with BRC. In addition, GO and pathway analyses suggested the involvement of lncRNA ST7-AS1 in cell cycle, DNA repair, and immune cell infiltration in the BRC immune microenvironment. We found the correlation of lncRNA ST7-AS1 with T helper cells and DC cells.Conclusion: Low expression of lncRNA ST7-AS1 indicates poor prognosis and has an impact on cell cycle, DNA repair, and proportion of infiltrating immune cells in the BRC microenvironment. Therefore, lncRNA ST7-AS1 can be used as a protective prognostic marker and a potential treatment target for BRC.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9847
Author(s):  
Yandong Miao ◽  
Qiutian Li ◽  
Jiangtao Wang ◽  
Wuxia Quan ◽  
Chen Li ◽  
...  

Colorectal cancer (CRC) is one of the most common and deadly malignancies. Novel biomarkers for the diagnosis and prognosis of this disease must be identified. Besides, metabolism plays an essential role in the occurrence and development of CRC. This article aims to identify some critical prognosis-related metabolic genes (PRMGs) and construct a prognosis model of CRC patients for clinical use. We obtained the expression profiles of CRC from The Cancer Genome Atlas database (TCGA), then identified differentially expressed PRMGs by R and Perl software. Hub genes were filtered out by univariate Cox analysis and least absolute shrinkage and selection operator Cox analysis. We used functional enrichment analysis methods, such as Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and Gene Set Enrichment Analysis, to identify involved signaling pathways of PRMGs. The nomogram predicted overall survival (OS). Calibration traces were used to evaluate the consistency between the actual and the predicted survival rate. Finally, a prognostic model was constructed based on six metabolic genes (NAT2, XDH, GPX3, AKR1C4, SPHK1, and ADCY5), and the risk score was an independent prognostic prognosticator. Genetic expression and risk score were significantly correlated with clinicopathologic characteristics of CRC. A nomogram based on the clinicopathological feature of CRC and risk score accurately predicted the OS of individual CRC cancer patients. We also validated the results in the independent colorectal cancer cohorts GSE39582 and GSE87211. Our study demonstrates that the risk score is an independent prognostic biomarker and is closely correlated with the malignant clinicopathological characteristics of CRC patients. We also determined some metabolic genes associated with the survival and clinical stage of CRC as potential biomarkers for CRC diagnosis and treatment.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Peng Qin ◽  
Mengyu Zhang ◽  
Xue Liu ◽  
Ziming Dong

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death. HBV infection is an important risk factor for the tumorigenesis of HCC, given that the inflammatory environment is closely related to morbidity and prognosis. Consequently, it is of urgent importance to explore the immunogenomic landscape to supplement the prognosis of HCC. The expression profiles of immune‐related genes (IRGs) were integrated with 377 HCC patients to generate differentially expressed IRGs based on the Cancer Genome Atlas (TCGA) dataset. These IRGs were evaluated and assessed in terms of their diagnostic and prognostic values. A total of 32 differentially expressed immune‐related genes resulted as significantly correlated with the overall survival of HCC patients. The Gene Ontology functional enrichment analysis revealed that these genes were actively involved in cytokine‐cytokine receptor interaction. A prognostic signature based on IRGs (HSPA4, PSME3, PSMD14, FABP6, ISG20L2, TRAF3, NDRG1, NRAS, CSPG5, and IL17D) stratified patients into high-risk versus low-risk groups in terms of overall survival and remained as an independent prognostic factor in multivariate analyses after adjusting for clinical and pathologic factors. Several IRGs (HSPA4, PSME3, PSMD14, FABP6, ISG20L2, TRAF3, NDRG1, NRAS, CSPG5, and IL17D) of clinical significance were screened in the present study, revealing that the proposed clinical-immune signature is a promising risk score for predicting the prognosis of HCC.


Sign in / Sign up

Export Citation Format

Share Document