scholarly journals Plasticity in AAA+ proteases reveals ATP-dependent substrate specificity principles

2021 ◽  
Author(s):  
Samar A. Mahmoud ◽  
Berent Aldikacti ◽  
Peter Chien

SummaryIn bacteria, AAA+ proteases such as Lon and ClpXP specifically degrade substrates to promote growth and stress responses. Here, we find that an ATP-binding mutant of ClpX suppresses physiological defects of a Lon-deficient strain by shifting ClpXP protease specificity toward normally Lon-restricted substrates and away from normal ClpXP targets. Reconstitution with purified proteins assigns these effects to changes in direct recognition and processing of substrates. We show that wildtype ClpXP specificity can be similarly altered when ATP hydrolysis is reduced, which unexpectedly accelerates degradation of some substrates. This activation corresponds with changes in ClpX conformation, leading to a model where ClpX cycles between ‘capture’ and ‘processive’ states depending on ATP loading. Limiting ATP binding alters dynamics between states affording better recognition of unorthodox substrates, but worse degradation of proteins specifically bound by the processive state. Thus, AAA+ protease specificities can be directly tuned by differences in ATP hydrolysis rates.HighlightsA mutation in the Walker B region of ClpX induces recognition of new substrates.Proteases are optimized for specific functions but barrier to recognize new substrates is easily overcome.Expanding substrate recognition by a protease comes at the cost of reducing native substrate degradation.Decreasing ATP enhances ClpXP mediated degradation of certain classes of substrates.ClpX adopts distinct conformational states to favor better recognition of some substrates over others.Graphical AbstractIn a wildtype cell, AAA+ proteases Lon and ClpXP promote normal growth by degrading distinct substrates. ClpX*P can compensate for the absence of the Lon protease by tuning ClpXP substrate specificity to better degrade Lon-privileged substrates (such as DnaA, SciP, and misfolded proteins) but this comes at the cost of native ClpXP substrates (such as ssrA-tagged proteins and CtrA). We propose that ClpX alternates between a closed and open conformation and promoting one state over the other leads to alterations in substrate specificity. In the presence of ClpX* or in ATP-limited conditions, the open state is favored, allowing capture and recognition of substrates such as casein. The balance shifts to the closed state under high ATP conditions, allowing degradation of substrates such as GFP-ssrA, which preferentially bind the closed state.

2012 ◽  
Vol 139 (5) ◽  
pp. 359-370 ◽  
Author(s):  
Kang-Yang Jih ◽  
Yoshiro Sohma ◽  
Min Li ◽  
Tzyh-Chang Hwang

Adenosine triphosphate (ATP)-binding cassette (ABC) transporters, ubiquitous proteins found in all kingdoms of life, catalyze substrates translocation across biological membranes using the free energy of ATP hydrolysis. Cystic fibrosis transmembrane conductance regulator (CFTR) is a unique member of this superfamily in that it functions as an ATP-gated chloride channel. Despite difference in function, recent studies suggest that the CFTR chloride channel and the exporter members of the ABC protein family may share an evolutionary origin. Although ABC exporters harness the free energy of ATP hydrolysis to fuel a transport cycle, for CFTR, ATP-induced dimerization of its nucleotide-binding domains (NBDs) and subsequent hydrolysis-triggered dimer separation are proposed to be coupled, respectively, to the opening and closing of the gate in its transmembrane domains. In this study, by using nonhydrolyzable ATP analogues, such as pyrophosphate or adenylyl-imidodiphosphate as baits, we captured a short-lived state (state X), which distinguishes itself from the previously identified long-lived C2 closed state by its fast response to these nonhydrolyzable ligands. As state X is caught during the decay phase of channel closing upon washout of the ligand ATP but before the channel sojourns to the C2 closed state, it likely emerges after the bound ATP in the catalysis-competent site has been hydrolyzed and the hydrolytic products have been released. Thus, this newly identified post-hydrolytic state may share a similar conformation of NBDs as the C2 closed state (i.e., a partially separated NBD and a vacated ATP-binding pocket). The significance of this novel state in understanding the structural basis of CFTR gating is discussed.


Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 697
Author(s):  
Juan Mao ◽  
Wenxin Li ◽  
Jing Liu ◽  
Jianming Li

The plant glycogen synthase kinase 3 (GSK3)-like kinases are highly conserved protein serine/threonine kinases that are grouped into four subfamilies. Similar to their mammalian homologs, these kinases are constitutively active under normal growth conditions but become inactivated in response to diverse developmental and environmental signals. Since their initial discoveries in the early 1990s, many biochemical and genetic studies were performed to investigate their physiological functions in various plant species. These studies have demonstrated that the plant GSK3-like kinases are multifunctional kinases involved not only in a wide variety of plant growth and developmental processes but also in diverse plant stress responses. Here we summarize our current understanding of the versatile physiological functions of the plant GSK3-like kinases along with their confirmed and potential substrates.


Author(s):  
Earley H. ◽  
Mealy K.

Abstract Introduction Postgraduate specialty training in Ireland is associated with considerable cost. Some of these are mandatory costs such as medical council fees, while others are necessary to ensure career progression, such as attendance at courses and conferences. In particular, surgical specialities are believed to be associated with high training costs. It is unknown how these costs compare to those borne by counterparts in other specialities. Aims The aims of this study were to Quantify the amount that trainees in Ireland spend on postgraduate training Determine whether a difference exists between surgery and other non-skill-based specialties in terms of expenditure on training Methods A standardised non-mandatory questionnaire was circulated to trainees across two training centres in Ireland. Trainees at all levels were invited to participate. Results Sixty responses were obtained. Fifty-seven questionnaires were fully completed and included for analysis. The median expenditure on training was higher for surgical than non-surgical specialities. Subgroup analysis revealed surgical training was associated with higher expenditure on higher degrees and courses compared to medical training (p = 0.035). > 95% of trainees surveyed felt that greater financial support should be available for trainees during the course of their training. Conclusions This study demonstrated that a career in surgery is associated with higher ongoing costs for higher degrees and courses than counterparts in non-surgical training. All surgical trainees surveyed felt that better financial support should be available. Increasing financial support for may be a tangible way to mitigate against attrition during training.


2020 ◽  
Vol 15 (1) ◽  
pp. 4-17
Author(s):  
Jean-François Biasse ◽  
Xavier Bonnetain ◽  
Benjamin Pring ◽  
André Schrottenloher ◽  
William Youmans

AbstractWe propose a heuristic algorithm to solve the underlying hard problem of the CSIDH cryptosystem (and other isogeny-based cryptosystems using elliptic curves with endomorphism ring isomorphic to an imaginary quadratic order 𝒪). Let Δ = Disc(𝒪) (in CSIDH, Δ = −4p for p the security parameter). Let 0 < α < 1/2, our algorithm requires:A classical circuit of size $2^{\tilde{O}\left(\log(|\Delta|)^{1-\alpha}\right)}.$A quantum circuit of size $2^{\tilde{O}\left(\log(|\Delta|)^{\alpha}\right)}.$Polynomial classical and quantum memory.Essentially, we propose to reduce the size of the quantum circuit below the state-of-the-art complexity $2^{\tilde{O}\left(\log(|\Delta|)^{1/2}\right)}$ at the cost of increasing the classical circuit-size required. The required classical circuit remains subexponential, which is a superpolynomial improvement over the classical state-of-the-art exponential solutions to these problems. Our method requires polynomial memory, both classical and quantum.


2000 ◽  
Vol 74 (20) ◽  
pp. 9732-9737 ◽  
Author(s):  
Shin C. Chang ◽  
Ju-Chien Cheng ◽  
Yi-Hen Kou ◽  
Chuan-Hong Kao ◽  
Chiung-Hui Chiu ◽  
...  

ABSTRACT The nonstructural protein 3 (NS3) of hepatitis C virus (HCV) possesses protease, nucleoside triphosphatase, and helicase activities. Although the enzymatic activities have been extensively studied, the ATP- and RNA-binding domains of the NS3 helicase are not well-characterized. In this study, NS3 proteins with point mutations in the conserved helicase motifs were expressed inEscherichia coli, purified, and analyzed for their effects on ATP binding, RNA binding, ATP hydrolysis, and RNA unwinding. UV cross-linking experiments indicate that the lysine residue in the AX4GKS motif is directly involved in ATP binding, whereas the NS3(GR1490DT) mutant in which the arginine-rich motif (1486-QRRGRTGR-1493) was changed to QRRDTTGR bound ATP as well as the wild type. The binding activity of HCV NS3 helicase to the viral RNA was drastically reduced with the mutation at Arg1488 (R1488A) and was also affected by the K1236E substitution in the AX4GKS motif and the R1490A and GR1490DT mutations in the arginine-rich motif. Previously, Arg1490 was suggested, based on the crystal structure of an NS3-deoxyuridine octamer complex, to directly interact with the γ-phosphate group of ATP. Nevertheless, our functional analysis demonstrated the critical roles of Arg1490 in binding to the viral RNA, ATP hydrolysis, and RNA unwinding, but not in ATP binding.


2008 ◽  
Vol 416 (1) ◽  
pp. 129-136 ◽  
Author(s):  
Luba Aleksandrov ◽  
Andrei Aleksandrov ◽  
John R. Riordan

ATP binding to the first and second NBDs (nucleotide-binding domains) of CFTR (cystic fibrosis transmembrane conductance regulator) are bivalent-cation-independent and -dependent steps respectively [Aleksandrov, Aleksandrov, Chang and Riordan (2002) J. Biol. Chem. 277, 15419–15425]. Subsequent to the initial binding, Mg2+ drives rapid hydrolysis at the second site, while promoting non-exchangeable trapping of the nucleotide at the first site. This occlusion at the first site of functional wild-type CFTR is somewhat similar to that which occurs when the catalytic glutamate residues in both of the hydrolytic sites of P-glycoprotein are mutated, which has been proposed to be the result of dimerization of the two NBDs and represents a transient intermediate formed during ATP hydrolysis [Tombline and Senior (2005) J. Bioenerg. Biomembr. 37, 497–500]. To test the possible relevance of this interpretation to CFTR, we have now characterized the process by which NBD1 occludes [32P]N3ATP (8-azido-ATP) and [32P]N3ADP (8-azido-ADP). Only N3ATP, but not N3ADP, can be bound initially at NBD1 in the absence of Mg2+. Despite the lack of a requirement for Mg2+ for ATP binding, retention of the NTP at 37 °C was dependent on the cation. However, at reduced temperature (4 °C), N3ATP remains locked in the binding pocket with virtually no reduction over a 1 h period, even in the absence of Mg2+. Occlusion occurred identically in a ΔNBD2 construct, but not in purified recombinant NBD1, indicating that the process is dependent on the influence of regions of CFTR in addition to NBD1, but not NBD2.


2019 ◽  
Vol 476 (24) ◽  
pp. 3737-3750 ◽  
Author(s):  
Sabrina Lusvarghi ◽  
Suresh V. Ambudkar

P-glycoprotein (P-gp), an ATP-binding cassette transporter associated with multidrug resistance in cancer cells, is capable of effluxing a number of xenobiotics as well as anticancer drugs. The transport of molecules through the transmembrane (TM) region of P-gp involves orchestrated conformational changes between inward-open and inward-closed forms, the details of which are still being worked out. Here, we assessed how the binding of transport substrates or modulators in the TM region and the binding of ATP to the nucleotide-binding domains (NBDs) affect the thermostability of P-gp in a membrane environment. P-gp stability after exposure at high temperatures (37–80°C) was assessed by measuring ATPase activity and loss of monomeric P-gp. Our results show that P-gp is significantly thermostabilized (&gt;22°C higher IT50) by the binding of ATP under non-hydrolyzing conditions (in the absence of Mg2+). By using an ATP-binding-deficient mutant (Y401A) and a hydrolysis-deficient mutant (E556Q/E1201Q), we show that thermostabilization of P-gp requires binding of ATP to both NBDs and their dimerization. Additionally, we found that transport substrates do not affect the thermal stability of P-gp either in the absence or presence of ATP; in contrast, inhibitors of P-gp including tariquidar and zosuquidar prevent ATP-dependent thermostabilization in a concentration-dependent manner, by stabilizing the inward-open conformation. Altogether, our data suggest that modulators, which bind in the TM regions, inhibit ATP hydrolysis and drug transport by preventing the ATP-dependent dimerization of the NBDs of P-gp.


2018 ◽  
Author(s):  
Qin Yu ◽  
Kun Qu ◽  
Yorgo Modis

SummaryDouble-stranded RNA (dsRNA) is a potent proinflammatory signature of viral infection. Long cytosolic dsRNA is recognized by MDA5. The cooperative assembly of MDA5 into helical filaments on dsRNA nucleates the assembly of a multiprotein type-I-interferon signaling platform. Here, we determined cryoEM structures of MDA5-dsRNA filaments with different helical twists and bound nucleotide analogs, at resolutions sufficient to build and refine atomic models. The structures identify the filament forming interfaces, which encode the dsRNA binding cooperativity and length specificity of MDA5. The predominantly hydrophobic interface contacts confer flexibility, reflected in the variable helical twist within filaments. Mutation of filament-forming residues can result in loss or gain of signaling activity. Each MDA5 molecule spans 14 or 15 RNA base pairs, depending on the twist. Variations in twist also correlate with variations in the occupancy and type of nucleotide in the active site, providing insights on how ATP hydrolysis contributes to MDA5-dsRNA recognition.eTOCStructures of MDA5 bound to double-stranded RNA reveal a flexible, predominantly hydrophobic filament forming interface. The filaments have variable helical twist. Structures determined with ATP and transition state analogs show how the ATPase cycle is coupled to changes in helical twist, the mode of RNA binding and the length of the RNA footprint of MDA5.HighlightsCryoEM structures of MDA5-dsRNA filaments determined for three catalytic statesFilament forming interfaces are flexible and predominantly hydrophobicMutation of filament-forming residues can cause loss or gain of IFN-β signalingATPase cycle is coupled to changes in filament twist and size of the RNA footprint


2021 ◽  
Vol 12 ◽  
Author(s):  
Pajaree Sonsungsan ◽  
Pheerawat Chantanakool ◽  
Apichat Suratanee ◽  
Teerapong Buaboocha ◽  
Luca Comai ◽  
...  

Salinity is an important environmental factor causing a negative effect on rice production. To prevent salinity effects on rice yields, genetic diversity concerning salt tolerance must be evaluated. In this study, we investigated the salinity responses of rice (Oryza sativa) to determine the critical genes. The transcriptomes of ‘Luang Pratahn’ rice, a local Thai rice variety with high salt tolerance, were used as a model for analyzing and identifying the key genes responsible for salt-stress tolerance. Based on 3' Tag-Seq data from the time course of salt-stress treatment, weighted gene co-expression network analysis was used to identify key genes in gene modules. We obtained 1,386 significantly differentially expressed genes in eight modules. Among them, six modules indicated a significant correlation within 6, 12, or 48h after salt stress. Functional and pathway enrichment analysis was performed on the co-expressed genes of interesting modules to reveal which genes were mainly enriched within important functions for salt-stress responses. To identify the key genes in salt-stress responses, we considered the two-state co-expression networks, normal growth conditions, and salt stress to investigate which genes were less important in a normal situation but gained more impact under stress. We identified key genes for the response to biotic and abiotic stimuli and tolerance to salt stress. Thus, these novel genes may play important roles in salinity tolerance and serve as potential biomarkers to improve salt tolerance cultivars.


Sign in / Sign up

Export Citation Format

Share Document