scholarly journals Quantifying the Effect of Anti-cancer Compound (Piperlongumine) on Cancer Cells Using Single-Cell Force Spectroscopy

2021 ◽  
Author(s):  
Nayara Sousa de Alcântara-Contessoto ◽  
Marinônio Lopes Cornélio ◽  
Ching-Hwa Kiang

AbstractNatural compounds have shown a great potential in anti-cancer research by tumor growth inhibition and anti-metastatic properties. Piperlongumine (PL) is a natural compound derived from pepper species that has been demonstrated to have anti-cancer effect on HeLa cells. Here we focus on understanding the mechanical properties of HeLa cells under PL treatment, using Atomic Force Microscopy (AFM) based single-cell manipulation technique. We used AFM to pull single HeLa cells and acquired the force-distance curves that presented stepwise patterns. We analyzed the step force (SF) and observed that cells treated with PL exhibit higher force compared to control cells. This SF increase was also observed in experiments performed on substrates of different stiffness. Therefore, analyzing SF, it is possible to investigate the effect of PL on the mechanical properties of the HeLa cells. The understanding of the PL action on HeLa cells’ mechanical properties may help in the development of effective therapeutic drugs against cancers.

PLoS ONE ◽  
2014 ◽  
Vol 9 (11) ◽  
pp. e112582 ◽  
Author(s):  
Laura Andolfi ◽  
Eugenia Bourkoula ◽  
Elisa Migliorini ◽  
Anita Palma ◽  
Anja Pucer ◽  
...  

Nano Research ◽  
2021 ◽  
Author(s):  
Mi Li ◽  
Lianqing Liu ◽  
Tomaso Zambelli

AbstractFluidic force microscopy (FluidFM), which combines atomic force microscopy (AFM) with microchanneled cantilevers connected to a pressure controller, is a technique allowing the realization of force-sensitive nanopipette under aqueous conditions. FluidFM has unique advantages in simultaneous three-dimensional manipulations and mechanical measurements of biological specimens at the micro-/nanoscale. Over the past decade, FluidFM has shown its potential in biophysical assays particularly in the investigations at single-cell level, offering novel possibilities for discovering the underlying mechanisms guiding life activities. Here, we review the utilization of FluidFM to address biomechanical and biophysical issues in the life sciences. Firstly, the fundamentals of FluidFM are represented. Subsequently, the applications of FluidFM for biophysics at single-cell level are surveyed from several facets, including single-cell manipulations, single-cell force spectroscopy, and single-cell electrophysiology. Finally, the challenges and perspectives for future progressions are provided.


2014 ◽  
Vol 14 (1) ◽  
pp. 57-70 ◽  
Author(s):  
Sung-Woong Han ◽  
Chikashi Nakamura ◽  
Jun Miyake ◽  
Sang-Mok Chang ◽  
Taiji Adachi

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Yuki Fujii ◽  
Wataru C. Koizumi ◽  
Taichi Imai ◽  
Megumi Yokobori ◽  
Tomohiro Matsuo ◽  
...  

AbstractDuring the developmental processes of embryos, cells undergo massive deformation and division that are regulated by mechanical cues. However, little is known about how embryonic cells change their mechanical properties during different cleavage stages. Here, using atomic force microscopy, we investigated the stiffness of cells in ascidian embryos from the fertilised egg to the stage before gastrulation. In both animal and vegetal hemispheres, we observed a Rho kinase (ROCK)-independent cell stiffening that the cell stiffness exhibited a remarkable increase at the timing of cell division where cortical actin filaments were organized. Furthermore, in the vegetal hemisphere, we observed another mechanical behaviour, i.e., a ROCK-associated cell stiffening, which was retained even after cell division or occurred without division and propagated sequentially toward adjacent cells, displaying a characteristic cell-to-cell mechanical variation. The results indicate that the mechanical properties of embryonic cells are regulated at the single cell level in different germ layers.


2000 ◽  
Vol 39 (Part 1, No. 6B) ◽  
pp. 3711-3716 ◽  
Author(s):  
Hatsuki Shiga ◽  
Yukako Yamane ◽  
Etsuro Ito ◽  
Kazuhiro Abe ◽  
Kazushige Kawabata ◽  
...  

Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 652
Author(s):  
Divine Sebastian ◽  
Chun-Wei Yao ◽  
Lutfun Nipa ◽  
Ian Lian ◽  
Gary Twu

In this work, a mechanically durable anticorrosion superhydrophobic coating is developed using a nanocomposite coating solution composed of silica nanoparticles and epoxy resin. The nanocomposite coating developed was tested for its superhydrophobic behavior using goniometry; surface morphology using scanning electron microscopy and atomic force microscopy; elemental composition using energy dispersive X-ray spectroscopy; corrosion resistance using atomic force microscopy; and potentiodynamic polarization measurements. The nanocomposite coating possesses hierarchical micro/nanostructures, according to the scanning electron microscopy images, and the presence of such structures was further confirmed by the atomic force microscopy images. The developed nanocomposite coating was found to be highly superhydrophobic as well as corrosion resistant, according to the results from static contact angle measurement and potentiodynamic polarization measurement, respectively. The abrasion resistance and mechanical durability of the nanocomposite coating were studied by abrasion tests, and the mechanical properties such as reduced modulus and Berkovich hardness were evaluated with the aid of nanoindentation tests.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1661
Author(s):  
Katarzyna Adamiak ◽  
Katarzyna Lewandowska ◽  
Alina Sionkowska

Collagen films are widely used as adhesives in medicine and cosmetology. However, its properties require modification. In this work, the influence of salicin on the properties of collagen solution and films was studied. Collagen was extracted from silver carp skin. The rheological properties of collagen solutions with and without salicin were characterized by steady shear tests. Thin collagen films were prepared by solvent evaporation. The structure of films was researched using infrared spectroscopy. The surface properties of films were investigated using Atomic Force Microscopy (AFM). Mechanical properties were measured as well. It was found that the addition of salicin modified the roughness of collagen films and their mechanical and rheological properties. The above-mentioned parameters are very important in potential applications of collagen films containing salicin.


Sign in / Sign up

Export Citation Format

Share Document