scholarly journals Copper selects for siderophore-mediated virulence in Pseudomonas aeruginosa

2021 ◽  
Author(s):  
Luke Lear ◽  
Elze Hesse ◽  
Angus Buckling ◽  
Michiel Vos

AbstractIron is essential for almost all bacterial pathogens and consequently it is actively withheld by their hosts. The production of extracellular siderophores however enables iron sequestration by pathogens, increasing their virulence. Another function of siderophores is extracellular detoxification of non-ferrous metals. Here, we experimentally link the detoxification and virulence roles of siderophores by testing whether the opportunistic pathogen Pseudomonas aeruginosa displays greater virulence after exposure to copper stress. We incubated P. aeruginosa under different copper regimes for either two or twelve days. Subsequent growth in a copper-free environment removed phenotypic effects, before quantification of pyoverdine production (P. aeruginosa’s primary siderophore) and virulence using the Galleria mellonella infection model. Copper selected for increased pyoverdine production, which was positively associated with virulence. This effect increased with time. We here show a direct link between metal stress and bacterial virulence, highlighting another dimension of the detrimental effects of metal pollution on human health.

mBio ◽  
2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Sebastian Doberenz ◽  
Denitsa Eckweiler ◽  
Olga Reichert ◽  
Vanessa Jensen ◽  
Boyke Bunk ◽  
...  

ABSTRACT DNA methylation is widespread among prokaryotes, and most DNA methylation reactions are catalyzed by adenine DNA methyltransferases, which are part of restriction-modification (R-M) systems. R-M systems are known for their role in the defense against foreign DNA; however, DNA methyltransferases also play functional roles in gene regulation. In this study, we used single-molecule real-time (SMRT) sequencing to uncover the genome-wide DNA methylation pattern in the opportunistic pathogen Pseudomonas aeruginosa PAO1. We identified a conserved sequence motif targeted by an adenine methyltransferase of a type I R-M system and quantified the presence of N6-methyladenine using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Changes in the PAO1 methylation status were dependent on growth conditions and affected P. aeruginosa pathogenicity in a Galleria mellonella infection model. Furthermore, we found that methylated motifs in promoter regions led to shifts in sense and antisense gene expression, emphasizing the role of enzymatic DNA methylation as an epigenetic control of phenotypic traits in P. aeruginosa. Since the DNA methylation enzymes are not encoded in the core genome, our findings illustrate how the acquisition of accessory genes can shape the global P. aeruginosa transcriptome and thus may facilitate adaptation to new and challenging habitats. IMPORTANCE With the introduction of advanced technologies, epigenetic regulation by DNA methyltransferases in bacteria has become a subject of intense studies. Here we identified an adenosine DNA methyltransferase in the opportunistic pathogen Pseudomonas aeruginosa PAO1, which is responsible for DNA methylation of a conserved sequence motif. The methylation level of all target sequences throughout the PAO1 genome was approximated to be in the range of 65 to 85% and was dependent on growth conditions. Inactivation of the methyltransferase revealed an attenuated-virulence phenotype in the Galleria mellonella infection model. Furthermore, differential expression of more than 90 genes was detected, including the small regulatory RNA prrF1, which contributes to a global iron-sparing response via the repression of a set of gene targets. Our finding of a methylation-dependent repression of the antisense transcript of the prrF1 small regulatory RNA significantly expands our understanding of the regulatory mechanisms underlying active DNA methylation in bacteria. IMPORTANCE With the introduction of advanced technologies, epigenetic regulation by DNA methyltransferases in bacteria has become a subject of intense studies. Here we identified an adenosine DNA methyltransferase in the opportunistic pathogen Pseudomonas aeruginosa PAO1, which is responsible for DNA methylation of a conserved sequence motif. The methylation level of all target sequences throughout the PAO1 genome was approximated to be in the range of 65 to 85% and was dependent on growth conditions. Inactivation of the methyltransferase revealed an attenuated-virulence phenotype in the Galleria mellonella infection model. Furthermore, differential expression of more than 90 genes was detected, including the small regulatory RNA prrF1, which contributes to a global iron-sparing response via the repression of a set of gene targets. Our finding of a methylation-dependent repression of the antisense transcript of the prrF1 small regulatory RNA significantly expands our understanding of the regulatory mechanisms underlying active DNA methylation in bacteria.


Microbiology ◽  
2009 ◽  
Vol 155 (8) ◽  
pp. 2612-2619 ◽  
Author(s):  
Lisa K. Nelson ◽  
Genevieve H. D'Amours ◽  
Kimberley M. Sproule-Willoughby ◽  
Douglas W. Morck ◽  
Howard Ceri

Pseudomonas aeruginosa frequently acts as an opportunistic pathogen of mucosal surfaces; yet, despite causing aggressive prostatitis in some men, its role as a pathogen in the prostate has not been investigated. Consequently, we developed a Ps. aeruginosa infection model in the rat prostate by instilling wild-type (WT) Ps. aeruginosa strain PAO1 into the rat prostate. It was found that Ps. aeruginosa produced acute and chronic infections in this mucosal tissue as determined by bacterial colonization, gross morphology, tissue damage and inflammatory markers. WT strain PAO1 and its isogenic mutant PAO-JP2, in which both the lasI and rhlI quorum-sensing signal systems have been silenced, were compared during both acute and chronic prostate infections. In acute infections, bacterial numbers and inflammatory markers were comparable between WT PA01 and PAO-JP2; however, considerably less tissue damage occurred in infections with PAO-JP2. Chronic infections with PAO-JP2 resulted in reduced bacterial colonization, tissue damage and inflammation as compared to WT PAO1 infections. Therefore, the quorum-sensing lasI and rhlI genes in Ps. aeruginosa affect acute prostate infections, but play a considerably more important role in maintaining chronic infections. We have thus developed a highly reproducible model for the study of Ps. aeruginosa virulence in the prostate.


Author(s):  
Rustini Rustini ◽  
Jamsari Jamsari ◽  
Marlina Marlina ◽  
Nasrul Zubir ◽  
Yori Yuliandra

Objectives: Pseudomonas aeruginosa is an opportunistic pathogen that has an innate resistance to some antibiotics. This bacterium is one of the mostcommon causes of nosocomial infections that include surgical wound infections, burns, and urinary tract infections. The bacteria have been reportedlyresistant to many antibiotics and have developed multidrug resistance (MDR). The objective of the study was to determine the resistance pattern ofP. aeruginosa isolated from clinical samples of patients against some major antibiotics.Methods: Isolates of P. aeruginosa were obtained from clinical sample of urine, sputum, swabs, pus, feces, and blood and cultured in cetrimide agar. P.aeruginosa ATCC 27853 was used as a positive control. The antibacterial susceptibility testing was conducted against 13 antibiotics: Ceftazidime, cefotaxime,ceftriaxone, cefoperazone, ciprofloxacin, levofloxacin, ofloxacin, gentamicin, amikacin, piperacillin, ticarcillin, meropenem, and imipenem. The examinationwas carried out using agar diffusion method of Kirby-Bauer and following the standards from Clinical and Laboratory Standards Institute (CLSI).Results: The results showed that bacterial resistance was established against all tested antibiotics. The highest number of resistance was shownagainst ceftriaxone (44.21%), whereas the most susceptibility was exhibited against amikacin (only 9.47% of resistance). MDR P. aeruginosa (MDRPA)was detected on almost all clinical samples tested, except the feces. The sample with the highest percentage of MDRPA was the pus.Conclusion: The study concludes that the most effective antibiotic against P. aeruginosa is amikacin (91.51%), whereas the most resistance is exhibited to ceftriaxone (43.16%).


2021 ◽  
Author(s):  
Bryan Garcia ◽  
Melissa S. McDaniel ◽  
Allister J. Loughran ◽  
J. Dixon Johns ◽  
Vidya Narayanaswamy ◽  
...  

Pseudomonas aeruginosa is a common opportunistic pathogen that can cause chronic infections in multiple disease states, including respiratory infections in patients with cystic fibrosis (CF) and non-CF bronchiectasis. Like many opportunists, P. aeruginosa forms multicellular biofilm communities that are widely thought to be an important determinant of bacterial persistence and resistance to antimicrobials and host immune effectors during chronic/recurrent infections. Poly (acetyl, arginyl) glucosamine (PAAG) is a glycopolymer which has antimicrobial activity against a broad range of bacterial species, and also has mucolytic activity which can normalize rheologic properties of cystic fibrosis mucus. In this study, we sought to evaluate the effect of PAAG on P. aeruginosa bacteria within biofilms in vitro, and in the context of experimental pulmonary infection in a rodent infection model. PAAG treatment caused significant bactericidal activity against P. aeruginosa biofilms, and a reduction in the total biomass of preformed P. aeruginosa biofilms on abiotic surfaces, as well as on the surface of immortalized cystic fibrosis human bronchial epithelial cells. Studies of membrane integrity indicated that PAAG causes changes to P. aeruginosa cell morphology and dysregulates membrane polarity. PAAG treatment reduced infection and consequent tissue inflammation in experimental P. aeruginosa rat infections. Based on these findings we conclude that PAAG represents a novel means to combat P. aeruginosa infection, which may warrant further evaluation as a therapeutic.


2014 ◽  
Vol 63 (7) ◽  
pp. 945-955 ◽  
Author(s):  
Jessica Krezdorn ◽  
Sophie Adams ◽  
Peter J. Coote

The aim of this study was to compare the inhibitory effect of antibiotic combinations in vitro with efficacy in Galleria mellonella larvae in vivo to identify efficacious combinations that target Pseudomonas aeruginosa. P. aeruginosa NCTC 13437, a multidrug-resistant strain resistant to β-lactams and aminoglycosides, was used. Susceptibility to cefotaxime, piperacillin, meropenem, amikacin, levofloxacin and colistin alone, or in dual or triple combinations, was measured in vitro via a 24 h time-kill assay. In vitro results were then compared with the efficacy of the same dual or triple antibiotic combinations versus G. mellonella larvae infected with P. aeruginosa. G. mellonella haemolymph burden of P. aeruginosa was determined over 96 h post-infection and treatment with the most potent combination therapies. Many dual and triple combinations of antibiotics displayed synergistic inhibition of multidrug-resistant P. aeruginosa in vitro. There was little correlation between combinations that were synergistic in vitro and those that showed enhanced efficacy in vivo versus infected G. mellonella larvae. The most potent dual and triple combinations in vivo were cefotaxime plus piperacillin, and meropenem plus piperacillin and amikacin, respectively. Fewer combinations were found to offer enhanced therapeutic benefit in vivo compared with in vitro. The therapeutic benefit arising from treatment with antibiotic combinations in vivo correlated with reduced larval burden of P. aeruginosa. This study has identified antibiotic combinations that merit further investigation for their clinical potential and has demonstrated the utility of using G. mellonella to screen for novel antibiotic treatments that demonstrate efficacy in vivo.


2017 ◽  
Author(s):  
Sneha Garge ◽  
Sheyda Azimi ◽  
Stephen P. Diggle

AbstractHere we highlight the development of a simple and high throughput mung bean model to study virulence in the opportunistic pathogen Pseudomonas aeruginosa. The model is easy to setup and infection and virulence can be monitored for up to 10 days. In a first test of the model, we found that mung bean seedlings infected with PAO1 showed poor development of roots and high mortality rates compared to un-infected controls. We also found that a quorum sensing (QS) mutant was significantly less virulent when compared with the PAO1 wild type. Our work introduces a new tool for studying virulence in P. aeruginosa, that will allow for high throughput virulence studies of mutants, and for testing the in vivo efficacy of new therapies at a time when new antimicrobial drugs are desperately needed.


2013 ◽  
Vol 62 (12) ◽  
pp. 1790-1798 ◽  
Author(s):  
Matthew E. Wand ◽  
James W. I. McCowen ◽  
Philip G. Nugent ◽  
J. Mark Sutton

Worldwide, Klebsiella pneumoniae is an increasingly problematic opportunistic pathogen, with the emergence of carbapenem-resistant isolates of special importance. The mechanisms of virulence are poorly understood, and the current study utilized the invertebrate model Galleria mellonella to investigate facets of the virulence process. A range of UK clinical isolates and reference strains was assessed in Galleria by measuring survival as an end point. The clinical strains showed a range of virulence, with the majority of strains (68 %) causing greater than 50 % mortality at a challenge dose of 1×105 c.f.u. Three additional intermediate read-outs were developed to allow the mechanisms of virulence of Klebsiella to be dissected further. The release of lactate dehydrogenase as a marker of cell damage was the best predictor of virulence. Melanization as a marker of the insect innate immune system and ability to proliferate within Galleria as a marker of immune evasion also broadly correlated with survival but with some notable exceptions. No direct correlation was observed between virulence and either K1 or other defined capsular types, the carriage of defined virulence factors or particular functional phenotypes. Overall, the study showed that Galleria can provide significant insights into the mechanisms of virulence, and that this can be applied to the study of opportunistic human pathogens.


2020 ◽  
Author(s):  
Anne Six ◽  
Khedidja Mosbahi ◽  
Madhuri Barge ◽  
Colin Kleanthous ◽  
Thomas Evans ◽  
...  

SynopsisBackgroundBloodstream infections with antibiotic resistant Pseudomonas aeruginosa are common and increasingly difficult to treat. Pyocins are naturally occurring protein antibiotics produced by P. aeruginosa that have potential for human use.ObjectivesTo determine if pyocin treatment is effective in a murine model of sepsis with P. aeruginosa.MethodsRecombinant pyocins S5 and AP41 were purified tested for efficacy in a Galleria mellonella infection model and a murine model of P. aeruginosa sepsis.ResultsBoth pyocins produced no adverse effects when injected alone into mice and showed good in vitro antipseudomonal activity. In an invertebrate model of sepsis using Galleria mellonella, both pyocins significantly prolonged survival. Following injection into mice, both showed extensive distribution into different organs. When administered 5 hours after infection, both pyocins reduced mortality, with pyocin S5 being more effective than AP41.ConclusionsPyocins S5 and AP41 show in vivo biological activity and can improve survival in a murine model of P. aeruginosa infection. They hold promise as novel antimicrobial agents for treatment of multi-drug resistant infections with this microbe.


2018 ◽  
Vol 115 (18) ◽  
pp. 4779-4784 ◽  
Author(s):  
Sophie E. Darch ◽  
Olja Simoska ◽  
Mignon Fitzpatrick ◽  
Juan P. Barraza ◽  
Keith J. Stevenson ◽  
...  

Quorum sensing (QS) is a bacterial communication system that involves production and sensing of extracellular signals. In laboratory models, QS allows bacteria to monitor and respond to their own cell density and is critical for fitness. However, how QS proceeds in natural, spatially structured bacterial communities is not well understood, which significantly hampers our understanding of the emergent properties of natural communities. To address this gap, we assessed QS signaling in the opportunistic pathogen Pseudomonas aeruginosa in a cystic fibrosis (CF) lung infection model that recapitulates the biogeographical aspects of the natural human infection. In this model, P. aeruginosa grows as spatially organized, highly dense aggregates similar to those observed in the human CF lung. By combining this natural aggregate system with a micro-3D–printing platform that allows for confinement and precise spatial positioning of P. aeruginosa aggregates, we assessed the impact of aggregate size and spatial positioning on both intra- and interaggregate signaling. We discovered that aggregates containing ∼2,000 signal-producing P. aeruginosa were unable to signal neighboring aggregates, while those containing ≥5,000 cells signaled aggregates as far away as 176 µm. Not all aggregates within this “calling distance” responded, indicating that aggregates have differential sensitivities to signal. Overexpression of the signal receptor increased aggregate sensitivity to signal, suggesting that the ability of aggregates to respond is defined in part by receptor levels. These studies provide quantitative benchmark data for the impact of spatial arrangement and phenotypic heterogeneity on P. aeruginosa signaling in vivo.


Sign in / Sign up

Export Citation Format

Share Document