scholarly journals Laminar microcircuitry of visual cortex producing attention-associated electric fields

2021 ◽  
Author(s):  
Jacob A. Westerberg ◽  
Michelle S. Schall ◽  
Alexander Maier ◽  
Geoffrey F. Woodman ◽  
Jeffrey D. Schall

AbstractCognitive operations are widely studied by measuring electric fields through EEG and ECoG. However, despite their widespread use, the component neural circuitry giving rise to these signals remains unknown. Specifically, the functional architecture of cortical columns which results in attention-associated electric fields has not been explored. Here we detail the laminar cortical circuitry underlying an attention-associated electric field often measured over posterior regions of the brain in humans and monkeys. First, we identified visual cortical area V4 as one plausible contributor to this attention-associated electric field through inverse modeling of cranial EEG in macaque monkeys performing a visual attention task. Next, we performed laminar neurophysiological recordings on the prelunate gyrus and identified the electric-field-producing dipoles as synaptic activity in distinct cortical layers of area V4. Specifically, activation in the extragranular layers of cortex resulted in the generation of the attention-associated dipole. Feature selectivity of a given cortical column determined the overall contribution to this electric field. Columns selective for the attended feature contributed more to the electric field than columns selective for a different feature. Lastly, the laminar profile of synaptic activity generated by V4 was sufficient to produce an attention-associated signal measurable outside of the column. These findings suggest that the top-down recipient cortical layers produce an attention-associated electric field capable of being measured extracranially and the relative contribution of each column depends upon the underlying functional architecture.

2018 ◽  
Author(s):  
Ricardo Kienitz ◽  
Joscha T. Schmiedt ◽  
Katharine A. Shapcott ◽  
Kleopatra Kouroupaki ◽  
Richard C. Saunders ◽  
...  

SummaryGrowing evidence suggests that distributed spatial attention may invoke theta (3-9 Hz) rhythmic sampling processes. The neuronal basis of such attentional sampling is however not fully understood. Here we show using array recordings in visual cortical area V4 of two awake macaques that presenting separate visual stimuli to the excitatory center and suppressive surround of neuronal receptive fields elicits rhythmic multi-unit activity (MUA) at 3-6 Hz. This neuronal rhythm did not depend on small fixational eye movements. In the context of a distributed spatial attention task, during which the monkeys detected a spatially and temporally uncertain target, reaction times (RT) exhibited similar rhythmic fluctuations. RTs were fast or slow depending on the target occurrence during high or low MUA, resulting in rhythmic MUA-RT cross-correlations at at theta frequencies. These findings suggest that theta-rhythmic neuronal activity arises from competitive receptive field interactions and that this rhythm may subserve attentional sampling.HighlightsCenter-surround interactions induce theta-rhythmic MUA of visual cortex neuronsThe MUA rhythm does not depend on small fixational eye movementsReaction time fluctuations lock to the neuronal rhythm under distributed attention


2021 ◽  
Author(s):  
Mitchell P Morton ◽  
Sachira Denagamage ◽  
Isabel J Blume ◽  
John H Reynolds ◽  
Monika P Jadi ◽  
...  

Identical stimuli can be perceived or go unnoticed across successive presentations, producing divergent behavioral readouts despite similarities in sensory input. We hypothesized that fluctuations in neurophysiological states in the sensory neocortex, which could alter cortical processing at the level of neural subpopulations, underlies this perceptual variability. We analyzed cortical layer-specific electrophysiological activity in visual area V4 during a cued attention task. We find that hit trials are characterized by a larger pupil diameter and lower incidence of microsaccades, indicative of a behavioral state with increased arousal and perceptual stability. Target stimuli presented at perceptual threshold evoke elevated multi-unit activity in V4 neurons in hit trials compared to miss trials, across all cortical layers. Putative excitatory and inhibitory neurons are strongly positively modulated in the input (IV) and deep (V & VI) layers of the cortex during hit trials. Excitatory neurons in the superficial cortical layers exhibit lower variability in hit trials. Deep layer neurons are less phase-locked to low frequency rhythms in hits. Hits are also characterized by greater interlaminar coherence between the superficial and deep layers in the pre-stimulus period, and a complementary pattern between the input layer and both the superficial and deep layers in the stimulus-evoked period. Taken together, these results indicate that a state of elevated levels of arousal and perceptual stability allow enhanced processing of sensory stimuli, which contributes to hits at perceptual threshold.


1999 ◽  
Vol 17 (1) ◽  
pp. 43-52 ◽  
Author(s):  
J. A. Davies ◽  
M. Lester

Abstract. The relationship between electric fields, height-integrated conductivities and electric currents in the high-latitude nightside electrojet region is known to be complex. The tristatic nature of the EISCAT UHF radar facility provides an excellent means of exploring this interrelationship as it enables simultaneous estimates to be made of the full electric field vector and the ionospheric Hall and Pedersen conductances, further allowing the determination of both field-perpendicular electric current components. Over 1300 h of common programme observations by the UHF radar system provide the basis of a statistical study of electric fields, conductances and currents in the high-latitude ionosphere, from which preliminary results are presented. Times at which there is significant solar contribution to the ionospheric conductances have been excluded by limiting the observations according to solar zenith angle. Initial results indicate that, in general, the times of peak conductance, identified from the entire set of EISCAT observations, do not correspond to the times of the largest electric field values; the relative contribution of ionospheric conductance and electric field to the electrojet currents therefore depends critically on local time, a conclusion which corroborates work by previous authors. Simultaneous measurements confirm a tendency for a decrease in both Hall and Pedersen conductances to be accompanied by an increase in the electric field, at least for moderate and large electric field value, a tendency which is also identified to some extent in the ratio of the conductances, which acts as an indicator of the energy of precipitating particles.Key words. Ionosphere (auroral ionosphere; electric fields and currents)


2019 ◽  
Author(s):  
Johannes P. Dürholt ◽  
Babak Farhadi Jahromi ◽  
Rochus Schmid

Recently the possibility of using electric fields as a further stimulus to trigger structural changes in metal-organic frameworks (MOFs) has been investigated. In general, rotatable groups or other types of mechanical motion can be driven by electric fields. In this study we demonstrate how the electric response of MOFs can be tuned by adding rotatable dipolar linkers, generating a material that exhibits paralectric behavior in two dimensions and dielectric behavior in one dimension. The suitability of four different methods to compute the relative permittivity κ by means of molecular dynamics simulations was validated. The dependency of the permittivity on temperature T and dipole strength μ was determined. It was found that the herein investigated systems exhibit a high degree of tunability and substantially larger dielectric constants as expected for MOFs in general. The temperature dependency of κ obeys the Curie-Weiss law. In addition, the influence of dipolar linkers on the electric field induced breathing behavior was investigated. With increasing dipole moment, lower field strength are required to trigger the contraction. These investigations set the stage for an application of such systems as dielectric sensors, order-disorder ferroelectrics or any scenario where movable dipolar fragments respond to external electric fields.


Photonics ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 107
Author(s):  
Haichao Yu ◽  
Feng Tang ◽  
Jingjun Wu ◽  
Zao Yi ◽  
Xin Ye ◽  
...  

In intense-light systems, the traditional discrete optical components lead to high complexity and high cost. Metasurfaces, which have received increasing attention due to the ability to locally manipulate the amplitude, phase, and polarization of light, are promising for addressing this issue. In the study, a metasurface-based reflective deflector is investigated which is composed of silicon nanohole arrays that confine the strongest electric field in the air zone. Subsequently, the in-air electric field does not interact with the silicon material directly, attenuating the optothermal effect that causes laser damage. The highest reflectance of nanoholes can be above 99% while the strongest electric fields are tuned into the air zone. One presentative deflector is designed based on these nanoholes with in-air-hole field confinement and anti-damage potential. The 1st order of the meta-deflector has the highest reflectance of 55.74%, and the reflectance sum of all the orders of the meta-deflector is 92.38%. The optothermal simulations show that the meta-deflector can theoretically handle a maximum laser density of 0.24 W/µm2. The study provides an approach to improving the anti-damage property of the reflective phase-control metasurfaces for intense-light systems, which can be exploited in many applications, such as laser scalpels, laser cutting devices, etc.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Marie C. Lefevre ◽  
Gerwin Dijk ◽  
Attila Kaszas ◽  
Martin Baca ◽  
David Moreau ◽  
...  

AbstractGlioblastoma is a highly aggressive brain tumor, very invasive and thus difficult to eradicate with standard oncology therapies. Bioelectric treatments based on pulsed electric fields have proven to be a successful method to treat cancerous tissues. However, they rely on stiff electrodes, which cause acute and chronic injuries, especially in soft tissues like the brain. Here we demonstrate the feasibility of delivering pulsed electric fields with flexible electronics using an in ovo vascularized tumor model. We show with fluorescence widefield and multiphoton microscopy that pulsed electric fields induce vasoconstriction of blood vessels and evoke calcium signals in vascularized glioblastoma spheroids stably expressing a genetically encoded fluorescence reporter. Simulations of the electric field delivery are compared with the measured influence of electric field effects on cell membrane integrity in exposed tumor cells. Our results confirm the feasibility of flexible electronics as a means of delivering intense pulsed electric fields to tumors in an intravital 3D vascularized model of human glioblastoma.


Crystals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 298
Author(s):  
Yannick Minet ◽  
Hans Zappe ◽  
Ingo Breunig ◽  
Karsten Buse

Whispering gallery resonators made out of lithium niobate allow for optical parametric oscillation and frequency comb generation employing the outstanding second-order nonlinear-optical properties of this material. An important knob to tune and control these processes is, e.g., the linear electro-optic effect, the Pockels effect via externally applied electric fields. Due to the shape of the resonators a precise prediction of the electric field strength that affects the optical mode is non-trivial. Here, we study the average strength of the electric field in z-direction in the region of the optical mode for different configurations and geometries of lithium niobate whispering gallery resonators with the help of the finite element method. We find that in some configurations almost 100% is present in the cavity compared to the ideal case of a cylindrical resonator. Even in the case of a few-mode resonator with a very thin rim we find a strength of 90%. Our results give useful design considerations for future arrangements that may benefit from the strong electro-optic effect in bulk whispering gallery resonators made out of lithium niobate.


2003 ◽  
Vol 10 (1/2) ◽  
pp. 45-52 ◽  
Author(s):  
R. E. Ergun ◽  
L. Andersson ◽  
C. W. Carlson ◽  
D. L. Newman ◽  
M. V. Goldman

Abstract. Direct observations of magnetic-field-aligned (parallel) electric fields in the downward current region of the aurora provide decisive evidence of naturally occurring double layers. We report measurements of parallel electric fields, electron fluxes and ion fluxes related to double layers that are responsible for particle acceleration. The observations suggest that parallel electric fields organize into a structure of three distinct, narrowly-confined regions along the magnetic field (B). In the "ramp" region, the measured parallel electric field forms a nearly-monotonic potential ramp that is localized to ~ 10 Debye lengths along B. The ramp is moving parallel to B at the ion acoustic speed (vs) and in the same direction as the accelerated electrons. On the high-potential side of the ramp, in the "beam" region, an unstable electron beam is seen for roughly another 10 Debye lengths along B. The electron beam is rapidly stabilized by intense electrostatic waves and nonlinear structures interpreted as electron phase-space holes. The "wave" region is physically separated from the ramp by the beam region. Numerical simulations reproduce a similar ramp structure, beam region, electrostatic turbulence region and plasma characteristics as seen in the observations. These results suggest that large double layers can account for the parallel electric field in the downward current region and that intense electrostatic turbulence rapidly stabilizes the accelerated electron distributions. These results also demonstrate that parallel electric fields are directly associated with the generation of large-amplitude electron phase-space holes and plasma waves.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1065
Author(s):  
Houssem Eddine Nechmi ◽  
Michail Michelarakis ◽  
Abderrahmane (Manu) Haddad ◽  
Gordon Wilson

Negative and positive partial discharge inception voltages and breakdown measurements are reported in a needle-plane electrode system as a function of pressure under AC voltage for natural gases (N2, CO2, and O2/CO2), pure NovecTM gases (C4F7N and C5F10O) and NovecTM in different natural gas admixtures. For compressed 4% C4F7N–96% CO2 and 6% C5F10O–12% O2–82% CO2 gas mixtures, the positive-streamer mode is identified as the breakdown mechanism. Breakdown and negative partial discharge inception voltages of 6% C5F10O–12% O2–82% CO2 are higher than those of 4% C4F7N–96% CO2. At 8.8 bar abs, the breakdown voltage of 6% C5F10O–12% O2–82% CO2 is equal to that of 12.77% O2–87.23% CO2 (buffer gas). Synergism in negative partial discharge inception voltage/electric field fits with the mean value and the sum of each partial pressure individually component for a 20% C4F7N–80% CO2 and 6% C5F10O–12% O2–82% CO2, respectively. In 9% C4F7N–91% CO2, the comparison of partial discharge inception electric fields is Emax (CO2) = Emax(C4F7N), and Emax (12.77% O2–87.23% CO2) = Emax(C5F10O) in 19% C5F10O–81%(12.77% O2–87.23% CO2). Polarity reversal occurs under AC voltage when the breakdown polarity changes from negative to positive cycle. Polarity reversal electric field EPR was quantified. Fitting results show that EPR (CO2) = EPR(9% C4F7N–91% CO2) and EPR(SF6) = EPR (22% C4F7N–78% CO2). EPR (4% C4F7N–96% CO2) = EPR (12.77% O2–87.23% CO2) and EPR (6% C5F10O–12% O2–82% CO2) < EPR (4% C4F7N–96% CO2) < EPR (CO2).


2021 ◽  
Vol 11 (8) ◽  
pp. 3317
Author(s):  
C.S. Quintans ◽  
Denis Andrienko ◽  
Katrin F. Domke ◽  
Daniel Aravena ◽  
Sangho Koo ◽  
...  

External electric fields (EEFs) have proven to be very efficient in catalysing chemical reactions, even those inaccessible via wet-chemical synthesis. At the single-molecule level, oriented EEFs have been successfully used to promote in situ single-molecule reactions in the absence of chemical catalysts. Here, we elucidate the effect of an EEFs on the structure and conductance of a molecular junction. Employing scanning tunnelling microscopy break junction (STM-BJ) experiments, we form and electrically characterize single-molecule junctions of two tetramethyl carotene isomers. Two discrete conductance signatures show up more prominently at low and high applied voltages which are univocally ascribed to the trans and cis isomers of the carotenoid, respectively. The difference in conductance between both cis-/trans- isomers is in concordance with previous predictions considering π-quantum interference due to the presence of a single gauche defect in the trans isomer. Electronic structure calculations suggest that the electric field polarizes the molecule and mixes the excited states. The mixed states have a (spectroscopically) allowed transition and, therefore, can both promote the cis-isomerization of the molecule and participate in electron transport. Our work opens new routes for the in situ control of isomerisation reactions in single-molecule contacts.


Sign in / Sign up

Export Citation Format

Share Document