scholarly journals Transplantation of bacteriophages from ulcerative colitis patients shifts the gut bacteriome and exacerbates severity of DSS-colitis

2021 ◽  
Author(s):  
Anshul Sinha ◽  
Yue Li ◽  
Mohammadali Khan Mirzaei ◽  
Michael Shamash ◽  
Rana Samadfam ◽  
...  

Inflammatory bowel diseases (IBDs) including Crohn's disease (CD) and ulcerative colitis (UC) are characterized by chronic and debilitating gut inflammation. Altered bacterial communities of the intestine are strongly associated with IBD initiation and progression. The gut virome, which is primarily composed of bacterial viruses (bacteriophages, phages) is thought to be an important factor regulating and shaping microbial communities in the gut. While alterations in the gut virome have been observed in IBD patients, the contribution of these viruses to alterations in the bacterial community and heightened inflammatory responses associated with IBD patients remains largely unknown. Here, we performed in vivo microbial cross-infection experiments to follow the effects of fecal virus-like particles (VLPs) isolated from UC patients and healthy controls on bacterial diversity and severity of experimental colitis in human microbiota-associated (HMA) mice. Shotgun metagenomics confirmed that several phages were transferred to HMA mice, resulting in treatment-specific alterations in the gut virome. VLPs from healthy and UC patients also shifted gut bacterial diversity of these mice, an effect that was amplified during experimental colitis. VLPs isolated from UC patients specifically altered the relative abundance of several bacterial taxa previously implicated in IBD progression. Additionally, UC VLP administration heightened colitis severity in HMA mice, as indicated by shortened colon length and increased pro-inflammatory cytokine production. Importantly, this effect was dependent on intact VLPs. Our findings build on recent literature indicating that phages are dynamic regulators of bacterial communities in the gut and implicate the intestinal virome in modulating intestinal inflammation and disease.

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Xinxiu Li ◽  
Eun Jung Lee ◽  
Danuta R. Gawel ◽  
Sandra Lilja ◽  
Samuel Schäfer ◽  
...  

Background. Unbiased studies using different genome-wide methods have identified a great number of candidate biomarkers for diagnosis and treatment response in pediatric ulcerative colitis (UC). However, clinical translation has been proven difficult. Here, we hypothesized that one reason could be differences between inflammatory responses in an inflamed gut and in peripheral blood cells. Methods. We performed meta-analysis of gene expression microarray data from intestinal biopsies and whole blood cells (WBC) from pediatric patients with UC and healthy controls in order to identify overlapping pathways, predicted upstream regulators, and potential biomarkers. Results. Analyses of profiling datasets from colonic biopsies showed good agreement between different studies regarding pathways and predicted upstream regulators. The most activated predicted upstream regulators included TNF, which is known to have a key pathogenic and therapeutic role in pediatric UC. Despite this, the expression levels of TNF were increased in neither colonic biopsies nor WBC. A potential explanation was increased expression of TNFR2, one of the membrane-bound receptors of TNF in the inflamed colon. Further analyses showed a similar pattern of complex relations between the expression levels of the regulators and their receptors. We also found limited overlap between pathways and predicted upstream regulators in colonic biopsies and WBC. An extended search including all differentially expressed genes that overlapped between colonic biopsies and WBC only resulted in identification of three potential biomarkers involved in the regulation of intestinal inflammation. However, two had been previously proposed in adult inflammatory bowel diseases (IBD), namely, MMP9 and PROK2. Conclusions. Our findings indicate that biomarker identification in pediatric UC is complicated by the involvement of multiple pathways, each of which includes many different types of genes in the blood or inflamed intestine. Therefore, further studies for identification of combinatorial biomarkers are warranted. Our study may provide candidate biomarkers for such studies.


2021 ◽  
Vol 22 (5) ◽  
pp. 2645
Author(s):  
Dinh Nam Tran ◽  
Seon Myeong Go ◽  
Seon-Mi Park ◽  
Eui-Man Jung ◽  
Eui-Bae Jeung

Inflammatory bowel diseases (IBDs) comprises a range of chronic inflammatory conditions of the intestinal tract. The incidence and prevalence of IBDs are increasing worldwide, but the precise etiology of these diseases is not completely understood. Calcium signaling plays a regulatory role in cellular proliferation. Nckx3, a potassium-dependent Na+/Ca2+ exchanger, is not only expressed in the brain but also in the aortic, uterine, and intestinal tissues, which contain abundant smooth muscle cells. This study investigated the role of Nckx3 in intestinal inflammation. Microarray analyses revealed the upregulation of the innate immune response-associated genes in the duodenum of Nckx3 knockout (KO) mice. The Nckx3 KO mice also showed an increase in IBD- and tumorigenesis-related genes. Using dextran sodium sulfate (DSS)-induced experimental colitis mice models, the Nckx3 KO mice showed severe colitis. Furthermore, the pathways involving p53 and NF-κB signaling were significantly upregulated by the absence of Nckx3. Overall, Nckx3 plays a critical role in the innate immune and immune response and may be central to the pathogenesis of IBD.


2018 ◽  
Vol 315 (6) ◽  
pp. G909-G920 ◽  
Author(s):  
Lanju Wang ◽  
Yaohui Wang ◽  
Zhenfeng Wang ◽  
Yu Qi ◽  
Beibei Zong ◽  
...  

Growth differentiation factor 11 (GDF11) has an anti-inflammatory effect in the mouse model of atherosclerosis and Alzheimer's disease, but how GDF11 regulates intestinal inflammation during ulcerative colitis (UC) is poorly defined. The Nod-like receptor family pyrin domain-1 containing 3 (NLRP3) inflammasome is closely associated with intestinal inflammation because of its ability to increase IL-1β secretion. Our aim is to determine whether GDF11 has an effect on attenuating experimental colitis in mice. In this study, using a dextran sodium sulfate (DSS)-induced acute colitis mouse model, we reported that GDF11 treatment attenuated loss of body weight, the severity of the disease activity index, shortening of the colon, and histological changes in the colon. GDF11 remarkably suppressed IL-1β secretion and NLRP3 inflammasome activation in colon samples and RAW 264.7 cells, such as the levels of NLRP3 and activated caspase-1. Furthermore, we found that GDF11 inhibited NLRP3 inflammasome activation by downregulating the Toll-like receptor 4/NF-κB p65 pathway and reactive oxygen species production via the typical Smad2/3 pathway. Thus, our research shows that GDF11 alleviates DSS-induced colitis by inhibiting NLRP3 inflammasome activation, providing some basis for its potential use in the treatment of UC. NEW & NOTEWORTHY Here, we identify a new role for growth differentiation factor 11 (GDF11), which ameliorates dextran sodium sulfate-induced acute colitis. Meanwhile, we discover a new phenomenon of GDF11 inhibiting IL-1β secretion and Nod-like receptor family pyrin domain-1 containing 3 (NLRP3) inflammasome activation. These findings reveal that GDF11 is a new potential candidate for the treatment of ulcerative colitis patients with a hyperactive NLRP3 inflammasome.


2019 ◽  
Vol 12 (4) ◽  
pp. 919-929 ◽  
Author(s):  
Yongtao Xiao ◽  
Ying Lu ◽  
Ying Wang ◽  
Weihui Yan ◽  
Wei Cai

AbstractThe regenerating islet-derived family member 4 (Reg4) in the gastrointestinal tract is up-regulated during intestinal inflammation. However, the physiological function of Reg4 in the inflammation is largely unknown. In the current study, the functional roles and involved mechanisms of intestinal epithelial Reg4 in intestinal inflammation were studied in healthy and inflamed states using human intestinal specimens, an intestinal conditional Reg4 knockout mouse (Reg4ΔIEC) model and dextran sulfate sodium (DSS)-induced colitis model. We showed that the elevated serum Reg4 in pediatric intestinal failure (IF) patients were positively correlated with the serum concentrations of proinflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). In inflamed intestine of IF patients, the crypt base Reg4 protein was increased and highly expressed towards the luminal face. The Reg4 was indicated as a novel target of activating transcription factor 2 (ATF2) that enhanced Reg4 expression during the intestinal inflammation. In vivo, the DSS-induced colitis was significantly ameliorated in Reg4ΔIEC mice. Reg4ΔIEC mice altered the colonic bacterial composition and reduced the bacteria adhere to the colonic epithelium. In vitro, Reg4 was showed to promote the growth of colonic organoids, and that this occurs through a mechanism involving activation of signal transducer and activator of transcription 3 (STAT3). In conclusion, our findings demonstrated intestinal-epithelial Reg4 deficiency protects against experimental colitis and mucosal injury via a mechanism involving alteration of bacterial homeostasis and STAT3 activation.


2011 ◽  
Vol 2011 ◽  
pp. 1-13 ◽  
Author(s):  
Manuel Oliveira ◽  
Nabil Bosco ◽  
Genevieve Perruisseau ◽  
Jeanne Nicolas ◽  
Iris Segura-Roggero ◽  
...  

Studies showed that specific probiotics provide therapeutic benefits in inflammatory bowel disease.In vitroevidence suggested thatLactobacillus paracaseialso called ST11 (CNCM I-2116) is a potent strain with immune modulation properties. However, little is known about its capacity to alleviate inflammatory symptomsin vivoIn this context, the main objective of this study was to investigate the role of ST11 on intestinal inflammation using the adoptive transfer mouse model of experimental colitis. Rag2-/-recipient mice were fed with ST11 (109CFU/day)a month prior toinduce colitis by adoptive transfer of naive T cells. One month later, in clear contrast to nonfed mice, weight loss was significantly reduced by 50% in ST11-fed mice. Further analysis of colon specimens revealed a significant reduction neutrophil infiltration and mucosal expression of IL1β, IL-6, and IL12 proinflammatory cytokines, whereas no consistent differences in expression of antibacterial peptides or tight junction proteins were observed between PBS and ST11-fed mice. All together, our results demonstrate that oral administration of ST11 was safe and had a significant preventive effect on colitis. We conclude that probiotics such asLactobacillus paracaseiharbor worthwhilein vivoimmunomodulatory properties to prevent intestinal inflammation by nutritional approaches.


Cells ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 517 ◽  
Author(s):  
Claudia Burrello ◽  
Maria Rita Giuffrè ◽  
Angeli Dominique Macandog ◽  
Angelica Diaz-Basabe ◽  
Fulvia Milena Cribiù ◽  
...  

Different gastrointestinal disorders, including inflammatory bowel diseases (IBD), have been linked to alterations of the gut microbiota composition, namely dysbiosis. Fecal microbiota transplantation (FMT) is considered an encouraging therapeutic approach for ulcerative colitis patients, mostly as a consequence of normobiosis restoration. We recently showed that therapeutic effects of FMT during acute experimental colitis are linked to functional modulation of the mucosal immune system and of the gut microbiota composition. Here we analysed the effects of therapeutic FMT administration during chronic experimental colitis, a condition more similar to that of IBD patients, on immune-mediated mucosal inflammatory pathways. Mucus and feces from normobiotic donors were orally administered to mice with established chronic Dextran Sodium Sulphate (DSS)-induced colitis. Immunophenotypes and functions of infiltrating colonic immune cells were evaluated by cytofluorimetric analysis. Compositional differences in the intestinal microbiome were analyzed by 16S rRNA sequencing. Therapeutic FMT in mice undergoing chronic intestinal inflammation was capable to decrease colonic inflammation by modulating the expression of pro-inflammatory genes, antimicrobial peptides, and mucins. Innate and adaptive mucosal immune cells manifested a reduced pro-inflammatory profile in FMT-treated mice. Finally, restoration of a normobiotic core ecology contributed to the resolution of inflammation. Thus, FMT is capable of controlling chronic intestinal experimental colitis by inducing a concerted activation of anti-inflammatory immune pathways, mechanistically supporting the positive results of FMT treatment reported in ulcerative colitis patients.


2020 ◽  
Vol 14 (Supplement_1) ◽  
pp. S031-S031
Author(s):  
W GONG ◽  
K Guo ◽  
J Ren

Abstract Background Macrophage-inducible C-type lectin (Mincle) signalling plays a proinflammatory role in different organs such as the brain and liver, but its role in intestinal inflammation remains unknown. Methods We studied the characteristics of Mincle signalling expression in CD patients and experimental colitis. The functional role of Mincle signalling in the intestine was addressed in experimental colitis models in vivo by using mice with Mincle knock out (Mincle−/−), neutralising anti-Mincle antibody, Mincle pharmacologic agonist and RNA-seq genome expression analysis. Bone marrow-derived macrophages were collected from mice and used to further verify the effect of Mincle signalling in macrophages. Results Mincle signalling was significantly elevated in active human CD and experimental colitis, and macrophages were the principal leukocyte subset that up-regulates Mincle signalling. Mincle deficiency ameliorated the colitis by reducing induced macrophage pyroptosis (Figure 1), whereas activation of Mincle with the pharmacologic agonist worsened the intestinal inflammation (Figure 2). Moreover, the ex vivo studies confirmed that Mincle signalling activation promoted and its absence restricted release of proinflammatory cytokines from pyroptosis of macrophage (Figure 3). Finally, Mincle/Syk signalling could promote the production of chemokines to recruit neutrophils by activating Mitogen-Activated Protein Kinase (MAPK) during inflammation (Figure 4). Conclusion Mincle signalling promotes intestinal mucosal inflammation through induction of macrophage pyroptosis and neutrophil chemotaxis. Modulation of the Mincle/Syk axis emerges as a potential therapeutic strategy to target inflammation and treat CD.


1998 ◽  
Vol 7 (3) ◽  
pp. 169-173 ◽  
Author(s):  
J. D. van Bergeijk ◽  
M. E. van Meeteren ◽  
C. J. A. M. Tak ◽  
A. P. M. van Dijk ◽  
M. A. C. Meijssen ◽  
...  

From severalin vitroandin vivostudies involvement of som atostatin (SMS) in intestinal inflammation emerge. Acute colitis induced in rats is attenuated by the long-acting SMS analogue octreotide. We studied the potential beneficial effect of SMS on non-acute experimental colitis. BALB/c mice received either saline, SMS-14 (36 or 120 μg daily) or octreotide (3 μg daily) subcutaneously delivered by implant osmotic pumps. A non-acute colitis was induced by administration of dextran sodium sulphate (DSS) 10% in drinking water during 7 days. DSS evoked a mild, superficial pancolitis, most characterized by mucosal ulceration and submucosal influx of neutrophils. Neither SMS-14 nor octreotide reduced mucosal inflammatory score or macroscopical disease activity, although reduction of intestinal levels of interleukin1 β (IL-1 β), IL-6 and IL-10 during DSS was augmented both by SMS and octreotide. A slight increase of neutrophil influx was seen during SMS administration in animals not exposed to DSS. In conclusion, SMS or its long-acting analogue did not reduce intestinal inflammation in non-acute DSS-induced colitis. According to the cytokine profile observed, SMS-14 and octreotide further diminished the reduction of intestinal macrophage and Th2 lymphocyte activity.


2016 ◽  
Vol 7 (1) ◽  
pp. 83-93 ◽  
Author(s):  
D.E. Romanin ◽  
S. Llopis ◽  
S. Genovés ◽  
P. Martorell ◽  
V.D. Ramón ◽  
...  

Inflammatory bowel diseases (IBDs) are complex affections with increasing incidence worldwide. Multiple factors are involved in the development and maintenance of the symptoms including enhanced oxidative stress in intestinal mucosa. The conventional therapeutic approaches for IBDs are based on the use anti-inflammatory drugs with important collateral effects and partial efficacy. In the present work we tested the anti-inflammatory capacity of Kluyveromyces marxianus CIDCA 8154 in different models. In vitro, we showed that the pretreatment of epithelial cells with the yeast reduce the levels of intracellular reactive oxygen species. Furthermore, in a murine model of trinitro benzene sulfonic acid-induced colitis, yeast-treated animals showed a reduced histopathological score (P<0.05) and lower levels of circulating interleukin 6 (P<0.05). The capacity to modulate oxidative stress in vivo was assessed using a Caenorhabditis elegans model. The yeast was able to protect the nematodes from oxidative stress by modulating the SKN-1 transcription factor trough the DAF-2 pathway. These results indicate that K. marxianus CIDCA 8154 could control the intestinal inflammation and cellular oxidative stress. Deciphering the mechanisms of action of different probiotics might be useful for the rational formulation of polymicrobial products containing microorganisms targeting different anti-inflammatory pathways.


Sign in / Sign up

Export Citation Format

Share Document