scholarly journals Serotype-based evaluation of an optogenetic construct in rat cortical astrocytes

2021 ◽  
Author(s):  
Lakshmini Balachandar ◽  
Diana Borrego ◽  
Jorge Riera

Optogenetics is a modern technique which has been recently expanded to non-neuronal cell types, e.g., astrocytes, and involves targeted gene delivery of light-sensitive ion channels like Channelrhodopsin-2 (ChR2). Optogenetic regulation of astrocytic activity can be used for therapeutic intervention of several neurological disorders. Astrocytic gene delivery, viz adeno-associated viral (AAV) vectors, have proven to be robust, time-, and cost-efficient contrary to the generation of transgenic animal models. When transducing astrocytes with an AAV vector, it is imperative to perform a serotype evaluation of the AAV vector due to variability in serotype transduction efficiency depending on species, target region and construct length. Rats have been a very successful animal model for studying a variety of brain disorders, from which ChR2-based intervention of astrocytes will benefit. However, the most efficient AAV capsid serotype targeting astrocytes for ChR2 expression in the in vivo rat brain cortex has not been characterized. To address this, we have evaluated AAV serotypes 1, 5, and 8 of the vector AAV-GFAP-hChR2(H134)-mCherry targeting astrocytes in the rat brain neocortex. Results show that serotype 8 exhibits promising transduction patterns, as it has demonstrated the highest tangential and radial viral spread in the rat brain. Our research will facilitate translational research for future applications of optogenetics involving the transduction of rat brain cortical astrocytes.

2021 ◽  
Author(s):  
Surbhi Sharma ◽  
Asgar Hussain Ansari ◽  
Soundhar Ramasamy

AbstractThe circadian clock regulates vital cellular processes by adjusting the physiology of the organism to daily changes in the environment. Rhythmic transcription of core Clock Genes (CGs) and their targets regulate these processes at the cellular level. Circadian clock disruption has been observed in people with neurodegenerative disorders like Alzheimer’s and Parkinson’s. Also, ablation of CGs during development has been shown to affect neurogenesis in both in vivo and in vitro models. Previous studies on the function of CGs in the brain have used knock-out models of a few CGs. However, a complete catalog of CGs in different cell types of the developing brain is not available and it is also tedious to obtain. Recent advancements in single-cell RNA sequencing (scRNA-seq) has revealed novel cell types and elusive dynamic cell states of the developing brain. In this study by using publicly available single-cell transcriptome datasets we systematically explored CGs-coexpressing networks (CGs-CNs) during embryonic and adult neurogenesis. Our meta-analysis reveals CGs-CNs in human embryonic radial glia, neurons and also in lesser studied non-neuronal cell types of the developing brain.


1994 ◽  
Vol 266 (4) ◽  
pp. R1169-R1173 ◽  
Author(s):  
F. Kanda ◽  
A. I. Arieff

Centrally released vasopressin plays an important role in the regulation of brain water and electrolyte composition and can affect brain intracellular pH and ATP synthesis in vivo. In this study, we evaluated the effects of [Arg8]vasopressin (AVP) on the Na(+)-Ca2+ exchanger, an important pathway in the regulation of cell Ca2+ concentration. It was found that AVP inhibited the Na(+)-Ca2+ exchanger in rat brain synaptosomes. This effect was completely blocked by the vasopressin V1-receptor antagonist d(CH2)5[(O-Me) Tyr2, Arg8]vasopressin. In addition, the vasopressin V2-receptor agonist 1-desamino-8-D-arginine vasopressin had no effect on the Na(+)-Ca2+ exchanger in rat brain synaptosomes. Depletion of intracellular Ca2+ by caffeine also had no effect on the effect of AVP on the Na(+)-Ca2+ exchanger. Na+ uptake by other pathways was also evaluated. It was found that AVP had no effect on Na+ uptake by pathways other than the Na(+)-Ca2+ exchanger. It is concluded that AVP inhibits the Na(+)-Ca2+ exchanger in neuronal membranes through vasopressin V1 receptors. Since this pathway is important in the regulation of cell volume and cytosolic Ca2+ in excitable tissue, AVP may impair neuronal cell repolarization in the central nervous system.


2016 ◽  
Vol 27 (2) ◽  
pp. 78
Author(s):  
Simon Gelman

Optogenetics is a novel technology with the widely acknowledged potential to revolutionize cell biology and neuroscience. Essentially, optogenetic methods integrate optical and genetic tools to control the activity of whole cells or subcellular events. In recent years, optogenetics has been used to activate and to inhibit genetically defined neuronal populations within neural circuits. As such, it has been used to show the sufficiency or the necessity of specific neuronal cell types in generating behaviors across a number of animal species. When employed in rodent models of human neurological and psychiatric disorders, optogenetics has provided clinically relevant insights into the function of pathologic neural circuits. Recent progress in the in vivo applications of this methodology is reviewed in this article, with particular focus on behavioral applications in nematodes, fish, rodents, and nonhuman primates.


2017 ◽  
Author(s):  
Donovan Ventimiglia ◽  
Cornelia I. Bargmann

AbstractSynaptic vesicle release properties vary between neuronal cell types, but in most cases the molecular basis of this heterogeneity is unknown. Here, we compare in vivo synaptic properties of two neuronal classes in the C. elegans central nervous system, using VGLUT-pHluorin to monitor synaptic vesicle exocytosis and retrieval in intact animals. We show that the glutamatergic sensory neurons AWCON and ASH have distinct synaptic dynamics associated with tonic and phasic synaptic properties, respectively. Exocytosis in ASH and AWCON is differentially affected by SNARE-complex regulators that are present in both neurons: phasic ASH release is strongly dependent on UNC-13, whereas tonic AWCON release relies upon UNC-18 and on the protein kinase C homolog PKC-1. Exocytosis and retrieval each have two timescales in AWCON but one major timescale in ASH. Strong stimuli that elicit high calcium levels also increase exocytosis and retrieval rates in AWCON, generating distinct tonic and evoked synaptic modes. These results highlight the differential deployment of shared presynaptic proteins in neuronal cell type-specific functions.


2019 ◽  
Author(s):  
Sarah J. Van Driesche ◽  
Kirsty Sawicka ◽  
Chaolin Zhang ◽  
Sharon K.Y. Hung ◽  
Christopher Y. Park ◽  
...  

SummaryLoss of function of the Fragile X Mental Retardation Protein (FMRP) in human Fragile X Syndrome (FXS) and in model organisms results in phenotypes of abnormal neuronal structure and dynamics, synaptic function and connectivity which may contribute to a state of neuronal, circuit and organism hyperexcitability. Previousin vivoidentification of FMRP association with specific mRNA targets in mouse brain revealed that FMRP regulates the translation of a large fraction of the synaptic proteome in both pre- and post-synaptic compartments as well as many transcription factors and chromatin modifying proteins. However, it was not previously possible to determine the ratio of FMRP binding to transcript abundance due to the complexity of different neuronal cell types in whole brain. Moreover, it has been difficult to link the translational regulation of specific targets to model phenotypes or human symptoms. For example, loss-of-function of FMRP in the Purkinje cells of the cerebellum results in three cell autonomous phenotypes related to learning and memory, including enhanced mGluR-LTD at parallel fiber synapses, altered dendritic spines and behavioral deficits in a eyeblink-conditioning learning paradigm shared by human FXS patients. The molecular basis for these and related human Fragile X phenotypes is unknown. To address these critical issues we have developed a new mouse model (theFmr1cTAG mouse) in which endogenous FMRP can be conditionally tagged for RNA:protein crosslinking and immunoprecipitation (CLIP) identification of the RNAs with which it interactsin vivo. We used theFmr1cTAG mouse to quantitatively evaluate FMRP-mRNA association in Purkinje and cerebellar granule neurons which together comprise the parallel-fiber synapse. We calculated a stoichiometrically ranked list of FMRP RNA binding events by normalizing to ribosome-associated transcript abundance determined by TRAP-seq, and now definitively find that FMRP associates with specific sets of mRNAs which differ between the two cell types. In Purkinje cells, many components of the mGluR signaling pathway are FMRP targets including the top-ranked Purkinje cell mRNAItpr1, encoding the IP3 receptor, the function of which is critical to proper mGluR-dependent synaptic plasticity. In sum, this novel approach provides the first ranked list of FMRP target mRNAs and further reveals that FMRP regulates a specific set of long neural genes related to relevant cell autonomous phenotypes.HighlightsWe have created a mouse model in which endogenous FMRP can be conditionally tagged.Using tag-specific CLIP we describe ranked and specific sets ofin vivoFMRP mRNA targets in two types of neurons.This ranking was used to reveal that FMRP regulates mRNAs with long coding sequences.FMRP mRNA targets in Purkinje cells, including the top-ranked IP3 receptor, are related to cell-autonomous Fragile X phenotypes.We have updated our previous list of whole mouse brain FMRP mRNA targets with more replicates, deeper sequencing and improved analysisThe use of tagged FMRP in less abundant cell populations allowed identification of novel mRNA targets missed in a whole brain analysis


2021 ◽  
Author(s):  
Sruti Rayaprolu ◽  
Sara Bitarafan ◽  
Ranjita Betarbet ◽  
Sydney N Sunna ◽  
Lihong Cheng ◽  
...  

Isolation and proteomic profiling of brain cell types, particularly neurons, pose several technical challenges which limit our ability to resolve distinct cellular phenotypes in neurological diseases. Therefore, we generated a novel mouse line that enables cell type-specific expression of a biotin ligase, TurboID, via Cre-lox strategy for in vivo proximity-dependent biotinylation of proteins. Using adenoviral-based and transgenic approaches, we show striking protein biotinylation in neuronal cell bodies and axons throughout the mouse brain. We quantified more than 2,000 neuron-derived proteins following enrichment that mapped to numerous subcellular compartments. Synaptic, transmembrane transporters, ion channel subunits, and disease-relevant druggable targets were among the most significantly enriched proteins. Remarkably, we resolved brain region-specific proteomic profiles of Camk2a neurons with distinct functional molecular signatures and disease associations that may underlie regional neuronal vulnerability. Leveraging the neuronal specificity of this in vivo biotinylation strategy, we used an antibody-based approach to uncover regionally unique patterns of neuron-derived signaling phospho-proteins and cytokines, particularly in the cortex and cerebellum. Our work provides a proteomic framework to investigate cell type-specific mechanisms driving physiological and pathological states of the brain as well as complex tissues beyond the brain.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Marcus Davidsson ◽  
Matilde Negrini ◽  
Swantje Hauser ◽  
Alexander Svanbergsson ◽  
Marcus Lockowandt ◽  
...  

AbstractAdeno Associated Virus (AAV)-mediated gene expression in the brain is widely applied in the preclinical setting to investigate the therapeutic potential of specific molecular targets, characterize various cellular functions, and model central nervous system (CNS) diseases. In therapeutic applications in the clinical setting, gene therapy offers several advantages over traditional pharmacological based therapies, including the ability to directly manipulate disease mechanisms, selectively target disease-afflicted regions, and achieve long-term therapeutic protein expression in the absence of repeated administration of pharmacological agents. Next to the gold-standard iodixanol-based AAV vector production, we recently published a protocol for AAV production based on chloroform-precipitation, which allows for fast in-house production of small quantities of AAV vector without the need for specialized equipment. To validate our recent protocol, we present here a direct side-by-side comparison between vectors produced with either method in a series of in vitro and in vivo assays with a focus on transgene expression, cell loss, and neuroinflammatory responses in the brain. We do not find differences in transduction efficiency nor in any other parameter in our in vivo and in vitro panel of assessment. These results suggest that our novel protocol enables most standardly equipped laboratories to produce small batches of high quality and high titer AAV vectors for their experimental needs.


2020 ◽  
Author(s):  
Aditi Bhargava ◽  
Peter Ohara ◽  
Luc Jasmin

AbstractDelivery of therapeutic moieties to specific cell types, such as neurons remains a challenge. Genes present in neurons are also expressed in non-neuronal cell types such as glia where they mediate non-targeted related functions. Thus, non-specific targeting of these proteins/channels has numerous unwanted side effects, as is the case with current small molecules or drug therapies. Current methodologies that use nanoparticles, lipid-mediated uptake, or mannitol in conjunction with lipids to deliver double-stranded RNA (dsRNA) have yielded mixed and unreliable results. We used a neuroanatomical tracer (B subunit of Cholera Toxin (CTB)) that binds to the ganglioside receptors (GM1) expressed on cells, including primary sensory neurons to deliver encapsulated dsRNA. This approach greatly improved delivery of dsRNA to the desired cells by enhancing uptake, reducing vehicle-mediated toxicity and protecting nucleotides from degradation by endonucleases. The delivery complex is internalized, and once inside the cell, the dsRNA naturally dissociates itself from the carrier complex and is very effective in knocking down cognate targets, both in vivo and in vitro. Past methods have used CTB-fusion proteins or chemically modified oligos or DNA moieties that have been covalently conjugated to CTB. Furthermore, CTB conjugated to an antigen, protein, or chemically modified nucleic acid is a potent activator of immune cell (T and B cells, macrophages) response, whereas CTB admixed with antigens or unmodified nucleic acids does not evoke this immune response. Importantly, in our method, the nucleic acids are not covalently linked to the carrier molecules. Thus, our method holds strong potential for targeted delivery of therapeutic moieties for cell types expressing GM1 receptors, including neuronal cell types.


1987 ◽  
Vol 7 (6) ◽  
pp. 2148-2154 ◽  
Author(s):  
R D McKinnon ◽  
P Danielson ◽  
M A Brow ◽  
F E Bloom ◽  
J G Sutcliffe

We examined the level of expression of small RNA transcripts hybridizing to a rodent repetitive DNA element, the identifier (ID) sequence, in a variety of cell types in vivo and in cultured mammalian cells. A 160-nucleotide (160n) cytoplasmic poly(A)+ RNA (BC1) appeared in late embryonic and early postnatal rat brain development, was enriched in the cerebral cortex, and appeared to be restricted to neural tissue and the anterior pituitary gland. A 110n RNA (BC2) was specifically enriched in brain, especially the postnatal cortex, but was detectable at low levels in peripheral tissues. A third, related 75n poly(A)- RNA (T3) was found in rat brain and at lower levels in peripheral tissues but was very abundant in the testes. The BC RNAs were found in a variety of rat cell lines, and their level of expression was dependent upon cell culture conditions. A rat ID probe detected BC-like RNAs in mouse brain but not liver and detected a 200n RNA in monkey brain but not liver at lower hybridization stringencies. These RNAs were expressed by mouse and primate cell lines. Thus, tissue-specific expression of small ID-sequence-related transcripts is conserved among mammals, but the tight regulation found in vivo is lost by cells in culture.


2008 ◽  
Vol 200 (3) ◽  
pp. 245-258 ◽  
Author(s):  
Kyriaki S Alatzoglou ◽  
Daniel Kelberman ◽  
Mehul T Dattani

Pituitary development is a complex process that depends on the co-ordinated spatial and temporal expression of transcription factors and signalling molecules that culminates in the formation of a complex organ that secretes six hormones from five different cell types. Given the fact that all distinct hormone producing cells arise from a common ectodermal primordium, the patterning, architecture and plasticity of the gland is impressive. Among the transcription factors involved in the early steps of pituitary organogenesis are SOX2 and SOX3, members of the SOX family that are emerging as key players in many developmental processes. Studies in vitro and in vivo in transgenic animal models have helped to elucidate their expression patterns and roles in the developing hypothalamo–pituitary region. It has been demonstrated that they may be involved in pituitary development either directly, through shaping of Rathke's pouch, or indirectly affecting signalling from the diencephalon. Their role has been further underlined by the pleiotropic effects of their mutations in humans that range from isolated hormone deficiencies to panhypopituitarism and developmental abnormalities affecting many organ systems. However, the exact mechanism of action of SOX proteins, their downstream targets and their interplay within the extensive network that regulates pituitary development is still the subject of a growing number of studies. The elucidation of their role is crucial for the understanding of a number of processes that range from developmental mechanisms to disease phenotypes and tumorigenesis.


Sign in / Sign up

Export Citation Format

Share Document