scholarly journals The immunomodulatory properties of the HDAC6 inhibitor ACY241 supports robust anti-tumor response in NSCLC when coupled with the chemotherapy drug Oxaliplatin

2021 ◽  
Author(s):  
Arup Bag ◽  
Andrew Schultz ◽  
Saloni Bhimani ◽  
William Dominguez ◽  
Ling Cen ◽  
...  

Background: Durable treatments that benefit a wide pool of patients remain elusive for Non-small cell lung cancer (NSCLC). The success of immunotherapy in a subset of NSCLC patients highlights the potential contribution of immune response to anti-tumor immunity while underscoring a need for broadly applicable therapeutic strategies. HDAC inhibitors are a promising class of drugs whose immunomodulatory properties are now being appreciated. In the present study, we evaluated the effects of the HDAC6 inhibitor, ACY241 on lung tumor immune compartment with the goal of understanding the scope of its immunomodulatory properties and its therapeutic potential in combination with Oxaliplatin. Methods: Lung adenocarcinoma-bearing mice were treated with ACY241 or vehicle after which the proportions and phenotype of tumor-associated T cells and macrophages were evaluated by comprehensive flow cytometric analysis. Bulk RNA-sequencing was also conducted on both cellular subsets to interrogate the transcriptomic changes associated with ACY241 treatment relative to vehicle controls. In vivo drug efficacy study was performed by administration of ACY241 and/or Oxaliplatin and assessing tumor growth and survival of tumor-bearing mice. Ex vivo functional studies was performed to assess tumor-associated T cell effector function as it correlates with measured outcomes. Results: We demonstrate that ACY241 promotes increased presence of T and NK cells in the lung tumors of treated mice. The tumor-associated T cells under ACY241 treatment displayed enhanced activation, proliferation, and effector profile. In addition, tumor-associated macrophages exhibited increased expression of MHC and co-stimulatory molecules while expression of inhibitory ligands were reduced. RNA-sequencing of both tumor-associated T cells and macrophages revealed significant genomic changes in both subsets that is consistent with ACY241-mediated enhancement of immune priming. These broad immunomodulatory properties of ACY241 were associated with significantly enhanced tumor-associated T cell effector functionality, robust anti-tumor response, and significantly prolonged survival of NSCLC-bearing mice when combined with the chemotherapy drug Oxaliplatin. Conclusion: Collectively, our studies highlight the broad immunomodulatory effect of ACY241 as a promising HDAC6 inhibitor which coupled with Oxaliplatin promotes robust therapeutic outcomes in a pre-clinical model of NSCLC, providing compelling rationale for the clinical testing of this novel combinatorial regimen in NSCLC.

2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A197-A197
Author(s):  
Brendan Horton ◽  
Brendan Horton ◽  
Duncan Morgan ◽  
Noor Momin ◽  
Vidit Bhandarkar ◽  
...  

BackgroundTumor infiltrating T cells (TIL) are highly correlated with response to checkpoint blockade immunotherapy (CBT) in melanoma. However, in non-small cell lung cancer (NSCLC), 61% of patients have TIL, but only 32% respond to CBT. It is unknown how these T cell-inflamed tumors are resistant to CBT. Understanding and overcoming this resistance would greatly increase the number of cancer patients who benefit from CBT.MethodsTo understand lung-specific anti-tumor immune responses, a NSCLC cell line derived from an autochthonous murine lung cancer (KP cell line) was transplanted into syngeneic C57BL/6 mice subcutaneously or intravenously. To study antigen-specific responses, the KP cell line was engineered with SIY and 2C TCR transgenic T cells, which are specific for SIY, were adoptively transferred into tumor-bearing animals.ResultsSubcutaneous KP tumors responded to CBT (aCTLA-4 and aPD-L1) with significant tumor regression while lung KP tumors were CBT resistant. Immunohistochemistry found that this was not due to lack of T cell infiltration, as lung tumors contained 10-fold higher numbers of CD8+ TIL than subcutaneous tumors. Single cell RNA sequencing of TIL uncovered that CD8+ TIL in lung lesions had blunted effector molecule expression that correlated with a lack of IL-2 signaling. Adoptive transfer of naïve, tumor-reactive 2C T cells resulted in equally robust T cell proliferation in both the inguinal and mediastinal lymph nodes (LNs). However, RNA sequencing of adoptively transferred 2C T cells isolated 3-days after transfer from draining LNs identified that T cells activated in the mediastinal LN had reduced levels of IL-2 signaling and blunted effector functions early during priming. Flow cytometry confirmed that T cells primed in the mediastinal LNs did not express CD25, GZMB, or IFN-g, while T cells in inguinal LNs upregulated all three of these effector molecules. Delivery of IL-2 and IL-12 during priming was sufficient to restore effector molecule expression on 2C T cells in mediastinal LNs. Analysis of published patient data identified that a subset of lung cancer patients showed a sizable population of CD8+ TIL with low IL-2 signaling and low expression of effector molecules, including common targets of CBT.ConclusionsImmunotherapy resistance in T cell-inflamed tumors is due to defective CD8+ T cell effector differentiation. IL-2-based therapies could enhance differentiation of functional CD8+ effector T cells and could turn immunotherapy resistant tumors to immunotherapy sensitive tumors. This is the first mechanistic study providing evidence for a distinct type of T cell dysfunction resistant to current CBT.Ethics ApprovalThis study was approved by MIT’s Committee on Animal Care, protocol number 0220-006-23.


Author(s):  
Jia Feng ◽  
Haichan Xu ◽  
Andrew Cinquina ◽  
Zehua Wu ◽  
Qi Chen ◽  
...  

AbstractWhile treatment for B-cell malignancies has been revolutionized through the advent of CAR immunotherapy, similar strategies for T-cell malignancies have been limited. Additionally, T-cell leukemias and lymphomas can commonly metastasize to the CNS, where outcomes are poor and treatment options are associated with severe side effects. Consequently, the development of safer and more effective alternatives for targeting malignant T cells that have invaded the CNS remains clinically important. CD5 CAR has previously been shown to effectively target various T-cell cancers in preclinical studies. As IL-15 strengthens the anti-tumor response, we have modified CD5 CAR to secrete an IL-15/IL-15sushi complex. In a Phase I clinical trial, these CD5-IL15/IL15sushi CAR T cells were tested for safety and efficacy in a patient with refractory T-LBL with CNS infiltration. CD5-IL15/IL15sushi CAR T cells were able to rapidly ablate the CNS lymphoblasts within a few weeks, resulting in the remission of the patient’s lymphoma. Despite the presence of CD5 on normal T cells, the patient only experienced a brief, transient T-cell aplasia. These results suggest that CD5-IL15/IL15sushi CAR T cells may be a safe and useful treatment of T-cell malignancies and may be particularly beneficial for patients with CNS involvement.Graphical Abstract


2021 ◽  
Vol 9 (Suppl 1) ◽  
pp. A26.2-A27
Author(s):  
M Seifert ◽  
M Benmebarek ◽  
B Cadilha ◽  
J Jobst ◽  
J Dörr ◽  
...  

BackgroundDespite remarkable response rates mediated by anti-CD19 chimeric antigen receptor (CAR) T cells in selected B cell malignancies, CAR T cell therapy still lacks efficacy in the vast majority of tumors. A substantial limiting factor of CAR T cell function is the immunosuppressive tumor microenvironment. Among other mechanisms, the accumulation of adenosine within the tumor can contribute to disease progression by suppressing anti-tumor immune responses. Adenosine 2a- and 2b-receptor (A2A and A2B)-mediated cAMP build-up suppresses T cell effector functions. In the present study we hypothesize, that combination therapy with the selective A2A/A2B dual antagonist AB928 (etrumadenant) enhances CAR T cell efficacy.Materials and MethodsSecond generation murine (anti-EPCAM) and human (anti-MSLN) CAR constructs, containing intracellular CD28 and CD3ζ domains, were fused via overlap extension PCR cloning. Murine or human T cells were retrovirally transduced to stably express the CAR constructs. A2A/A2B signaling in CAR T cells was analyzed by phospho-specific flow cytometry of CREB (pS133)/ATF-1 (pS63). CAR T cell activation was quantified by flow cytometry and enzyme-linked immunosorbent assay (ELISA) of IFN-γ, IL-2 and TNF-α. CAR T cell proliferation was assessed by flow cytometry. CAR T cell cytotoxicity was assessed by impedance based real-time cell analysis.ResultsAB928 protected murine CAR T cells from cAMP response element-binding protein (CREB) phosphorylation in the presence of stable adenosine analogue 5′-N-ethylcarboxamidoadenosine (NECA). NECA inhibited antigen-dependent CAR T cell cytokine secretion in response to four murine tumor cell lines. CAR T cell-mediated tumor cell lysis as well as proliferation were decreased in the presence of NECA or adenosine. Importantly, AB928 fully restored CAR T cell cytotoxicity, proliferation, and cytokine secretion in a dose dependent manner. Further, AB928 also restored antigen dependent cytokine secretion of human CAR T cells in the presence of NECA.ConclusionsHere we used the A2A/A2B dual antagonist AB928 to overcome adenosine-mediated suppression of CAR T cells. We found that AB928 enhanced important CAR T cell effector functions in the presence of the adenosine analogue, suggesting that combination therapy with AB928 may improve CAR T cell efficacy. This study was limited to in vitro experiments. To confirm the relevance of our findings, this combination therapy must be further investigated in an in vivo setting.Disclosure InformationM. Seifert: None. M. Benmebarek : None. B. Cadilha : None. J. Jobst: None. J. Dörr: None. T. Lorenzini: None. D. Dhoqina: None. J. Zhang: None. J. Zhang: None. U. Schindler: E. Ownership Interest (stock, stock options, patent or other intellectual property); Modest; Amgen Inc., Arcus Biosciences. Other; Significant; Arcus Biosciences. S. Endres: None. S. Kobold: B. Research Grant (principal investigator, collaborator or consultant and pending grants as well as grants already received); Significant; Arcus Biosciences.


2007 ◽  
Vol 204 (5) ◽  
pp. 979-985 ◽  
Author(s):  
Kerstin Lühn ◽  
Cameron P. Simmons ◽  
Edward Moran ◽  
Nguyen Thi Phuong Dung ◽  
Tran Nguyen Bich Chau ◽  
...  

Dengue virus infection is an increasingly important tropical disease, causing 100 million cases each year. Symptoms range from mild febrile illness to severe hemorrhagic fever. The pathogenesis is incompletely understood, but immunopathology is thought to play a part, with antibody-dependent enhancement and massive immune activation of T cells and monocytes/macrophages leading to a disproportionate production of proinflammatory cytokines. We sought to investigate whether a defective population of regulatory T cells (T reg cells) could be contributing to immunopathology in severe dengue disease. CD4+CD25highFoxP3+ T reg cells of patients with acute dengue infection of different severities showed a conventional phenotype. Unexpectedly, their capacity to suppress T cell proliferation and to secrete interleukin-10 was not altered. Moreover, T reg cells suppressed the production of vasoactive cytokines after dengue-specific stimulation. Furthermore, T reg cell frequencies and also T reg cell/effector T cell ratios were increased in patients with acute infection. A strong indication that a relative rise of T reg cell/effector T cell ratios is beneficial for disease outcome comes from patients with mild disease in which this ratio is significantly increased (P < 0.0001) in contrast to severe cases (P = 0.2145). We conclude that although T reg cells expand and function normally in acute dengue infection, their relative frequencies are insufficient to control the immunopathology of severe disease.


Blood ◽  
2000 ◽  
Vol 95 (11) ◽  
pp. 3460-3466 ◽  
Author(s):  
Frederick D. Goldman ◽  
Andrew L. Gilman ◽  
Clay Hollenback ◽  
Roberta M. Kato ◽  
Brett A. Premack ◽  
...  

Abstract Hydroxychloroquine (HCQ), a lysosomotropic amine, is an immunosuppressive agent presently being evaluated in bone marrow transplant patients to treat graft-versus-host disease. While its immunosuppressive properties have been attributed primarily to its ability to interfere with antigen processing, recent reports demonstrate HCQ also blocks T-cell activation in vitro. To more precisely define the T-cell inhibitory effects of HCQ, the authors evaluated T-cell antigen receptor (TCR) signaling events in a T-cell line pretreated with HCQ. In a concentration-dependent manner, HCQ inhibited anti-TCR–induced up-regulation of CD69 expression, a distal TCR signaling event. Proximal TCR signals, including inductive protein tyrosine phosphorylation, tyrosine phosphorylation of phospholipase C γ1, and total inositol phosphate production, were unaffected by HCQ. Strikingly, anti-TCR-crosslinking–induced calcium mobilization was significantly inhibited by HCQ, particularly at the highest concentrations tested (100 μmol/L) in both T-cell lines and primary T cells. HCQ, in a dose-dependent fashion, also reduced a B-cell antigen receptor calcium signal, indicating this effect may be a general property of HCQ. Inhibition of the calcium signal correlated directly with a reduction in the size of thapsigargin-sensitive intracellular calcium stores in HCQ-treated cells. Together, these findings suggest that disruption of TCR-crosslinking–dependent calcium signaling provides an additional mechanism to explain the immunomodulatory properties of HCQ.


Shock ◽  
2003 ◽  
Vol 19 (Supplement) ◽  
pp. 63
Author(s):  
N. Fazal ◽  
M. Shamim ◽  
M. Khan ◽  
S. Raziuddin ◽  
M. Goto ◽  
...  
Keyword(s):  
T Cells ◽  
T Cell ◽  

2020 ◽  
Vol 8 (2) ◽  
pp. e001849
Author(s):  
Isobel Okoye ◽  
Lai Xu ◽  
Melika Motamedi ◽  
Pallavi Parashar ◽  
John W Walker ◽  
...  

BackgroundWe have previously reported that the upregulation of galectin-9 (Gal-9) on CD4+ and CD8+ T cells in HIV patients was associated with impaired T cell effector functions. Gal-9 is a ligand for T cell immunoglobulin and mucin domain-3, and its expression on T cells in cancer has not been investigated. Therefore, we aimed to investigate the expression level and effects of Gal-9 on T cell functions in patients with virus-associated solid tumors (VASTs).Methods40 patients with VASTs through a non-randomized and biomarker-driven phase II LATENT trial were investigated. Peripheral blood mononuclear cells and tumor biopsies were obtained and subjected to immunophenotyping. In this trial, the effects of oral valproate and avelumab (anti-PD-L1) was investigated in regards to the expression of Gal-9 on T cells.ResultsWe report the upregulation of Gal-9 expression by peripheral and tumor-infiltrating CD4+ and CD8+ T lymphocytes in patients with VASTs. Our results indicate that Gal-9 expression is associated with dysfunctional T cell effector functions in the periphery and tumor microenvironment (TME). Coexpression of Gal-9 with PD-1 or T cell immunoglobulin and ITIM domain (TIGIT) exhibited a synergistic inhibitory effect and enhanced an exhausted T cell phenotype. Besides, responding patients to treatment had lower Gal-9 mRNA expression in the TME. Translocation of Gal-9 from the cytosol to the cell membrane of T cells following stimulation suggests persistent T cell receptor (TCR) stimulation as a potential contributing factor in Gal-9 upregulation in patients with VASTs. Moreover, partial colocalization of Gal-9 with CD3 on T cells likely impacts the initiation of signal transduction via TCR as shown by the upregulation of ZAP70 in Gal-9+ T cells. Also, we found an expansion of Gal-9+ but not TIGIT+ NK cells in patients with VASTs; however, dichotomous to TIGIT+ NK cells, Gal-9+ NK cells exhibited impaired cytotoxic molecules but higher Interferon gamma (IFN-γ) expression.ConclusionOur data indicate that higher Gal-9-expressing CD8+ T cells were associated with poor prognosis following immunotherapy with anti-Programmed death-ligand 1 (PD-L1) (avelumab) in our patients’ cohort. Therefore, for the very first time to our knowledge, we report Gal-9 as a novel marker of T cell exhaustion and the potential target of immunotherapy in patients with VASTs.


Blood ◽  
2020 ◽  
Vol 136 (7) ◽  
pp. 857-870
Author(s):  
Rebecca S. Hesterberg ◽  
Matthew S. Beatty ◽  
Ying Han ◽  
Mario R. Fernandez ◽  
Afua A. Akuffo ◽  
...  

Abstract Immunomodulatory drugs, such as thalidomide and related compounds, potentiate T-cell effector functions. Cereblon (CRBN), a substrate receptor of the DDB1-cullin-RING E3 ubiquitin ligase complex, is the only molecular target for this drug class, where drug-induced, ubiquitin-dependent degradation of known “neosubstrates,” such as IKAROS, AIOLOS, and CK1α, accounts for their biological activity. Far less clear is whether these CRBN E3 ligase-modulating compounds disrupt the endogenous functions of CRBN. We report that CRBN functions in a feedback loop that harnesses antigen-specific CD8+ T-cell effector responses. Specifically, Crbn deficiency in murine CD8+ T cells augments their central metabolism manifested as elevated bioenergetics, with supraphysiological levels of polyamines, secondary to enhanced glucose and amino acid transport, and with increased expression of metabolic enzymes, including the polyamine biosynthetic enzyme ornithine decarboxylase. Treatment with CRBN-modulating compounds similarly augments central metabolism of human CD8+ T cells. Notably, the metabolic control of CD8+ T cells by modulating compounds or Crbn deficiency is linked to increased and sustained expression of the master metabolic regulator MYC. Finally, Crbn-deficient T cells have augmented antigen-specific cytolytic activity vs melanoma tumor cells, ex vivo and in vivo, and drive accelerated and highly aggressive graft-versus-host disease. Therefore, CRBN functions to harness the activation of CD8+ T cells, and this phenotype can be exploited by treatment with drugs.


Author(s):  
Holger Winkels ◽  
Dennis Wolf

The infiltration and accumulation of pro- and anti-inflammatory leukocytes within the intimal layer of the arterial wall is a hallmark of developing and progressing atherosclerosis. While traditionally perceived as macrophage- and foam cell-dominated disease, it is now established that atherosclerosis is a partial autoimmune disease that involves the recognition of peptides from ApoB (apolipoprotein B), the core protein of LDL (low-density lipoprotein) cholesterol particles, by CD4 + T-helper cells and autoantibodies against LDL and ApoB. Autoimmunity in the atherosclerotic plaque has long been understood as a pathogenic T-helper type-1 driven response with proinflammatory cytokine secretion. Recent developments in high-parametric cell immunophenotyping by mass cytometry, single-cell RNA-sequencing, and in tools exploring antigen-specificity have established the existence of several unforeseen layers of T cell diversity with mixed T H 1 and T regulatory cells transcriptional programs and unpredicted fates. These findings suggest that pathogenic ApoB-reactive T cells evolve from atheroprotective and immunosuppressive CD4 + T regulatory cells that lose their protective properties over time. Here, we discuss T cell heterogeneity in atherosclerosis with a focus on plasticity, antigen-specificity, exhaustion, maturation, tissue residency, and its potential use in clinical prediction.


Sign in / Sign up

Export Citation Format

Share Document