scholarly journals Metabolic Regulation of Mitochondrial Morphologies in Pancreatic Beta Cells: Bioenergetics-Mitochondrial Dynamics Coupling

2021 ◽  
Author(s):  
Wen-Wei Tseng ◽  
Ching-Hsiang Chu ◽  
Chen Chang ◽  
Yi-Ju Lee ◽  
Shirui Zhao ◽  
...  

Cellular bioenergetics and mitochondrial dynamics are crucial for the secretion of insulin by pancreatic beta cells in response to elevated blood glucose concentrations. To obtain better insights into the interactions between energy production and mitochondrial fission/fusion dynamics, we combine live-cell mitochondria imaging with biophysical-based modeling and network analysis to elucidate the principle regulating mitochondrial morphology to match metabolic demand in pancreatic beta cells. A minimalistic differential equation-based model for beta cells was constructed to include glycolysis, oxidative phosphorylation, simple calcium dynamics, and graph-based fission/fusion dynamics controlled by ATP synthase flux and proton leak flux. The model revealed that mitochondrial fission occurs in response to hyperglycemia, starvation, ATP synthase inhibition, uncoupling, and diabetic condition, in which the rate of proton leak exceeds the rate of mitochondrial ATP synthesis. Under these metabolic challenges, the propensities of tip-to-tip fusion events simulated from the microscopic images of the mitochondrial networks were lower than those in the control group and prevented mitochondrial network formation. The modeling and network analysis could serve as the basis for further detailed research on the mechanisms of bioenergetics and mitochondrial dynamics coupling.

2016 ◽  
Vol 230 (1) ◽  
pp. 81-91 ◽  
Author(s):  
Julia Schultz ◽  
Rica Waterstradt ◽  
Tobias Kantowski ◽  
Annekatrin Rickmann ◽  
Florian Reinhardt ◽  
...  

Mitochondrial network functionality is vital for glucose-stimulated insulin secretion in pancreatic beta cells. Altered mitochondrial dynamics in pancreatic beta cells are thought to trigger the development of type 2 diabetes mellitus. Fission protein 1 (Fis1) might be a key player in this process. Thus, the aim of this study was to investigate mitochondrial morphology in dependence of beta cell function, after knockdown and overexpression of Fis1. We demonstrate that glucose-unresponsive cells with impaired glucose-stimulated insulin secretion (INS1-832/2) showed decreased mitochondrial dynamics compared with glucose-responsive cells (INS1-832/13). Accordingly, mitochondrial morphology visualised using MitoTracker staining differed between the two cell lines. INS1-832/2 cells formed elongated and clustered mitochondria, whereas INS1-832/13 cells showed a homogenous mitochondrial network. Fis1 overexpression using lentiviral transduction significantly improved glucose-stimulated insulin secretion and mitochondrial network homogeneity in glucose-unresponsive cells. Conversely, Fis1 downregulation by shRNA, both in primary mouse beta cells and glucose-responsive INS1-832/13 cells, caused unresponsiveness and significantly greater numbers of elongated mitochondria. Overexpression of FIS1 in primary mouse beta cells indicated an upper limit at which higher FIS1 expression reduced glucose-stimulated insulin secretion. Thus, FIS1 was overexpressed stepwise up to a high concentration in RINm5F cells using the RheoSwitch system. Moderate FIS1 expression improved glucose-stimulated insulin secretion, whereas high expression resulted in loss of glucose responsiveness and in mitochondrial artificial loop structures and clustering. Our data confirm that FIS1 is a key regulator in pancreatic beta cells, because both glucose-stimulated insulin secretion and mitochondrial dynamics were clearly adapted to precise expression levels of this fission protein.


2021 ◽  
Vol 15 ◽  
Author(s):  
Huiying Li ◽  
Hongquan Wang ◽  
Ling Zhang ◽  
Manshi Wang ◽  
Yanfeng Li

BackgroundAggregation and neurotoxicity of the presynaptic protein α-synuclein and the progressive loss of nigral dopaminergic neurons are believed to be the key hallmarks of Parkinson’s disease (PD). A53T mutant α-synuclein causes early onset PD and more severe manifestations. A growing body of evidence shows that misfolding or deposition of α-synuclein is linked to the maintenance of mitochondrial dynamics, which has been proven to play an important role in the pathogenesis of PD. It has been observed that Dl-3-n-butylphthalide (NBP) may be safe and effective in improving the non-tremor-dominant PD. However, the potential mechanism remains unclear. This study aimed to investigate whether NBP could decrease the loss of dopaminergic neurons and α-synuclein deposition and explore its possible neuroprotective mechanisms.MethodsA total of 20 twelve-month-old human A53T α-synuclein transgenic mice and 10 matched adult C57BL/6 mice were included in the study; 10 adult C57BL/6 mice were selected as the control group and administered with saline (0.2 ml daily for 14 days); 20 human A53T α-synuclein transgenic mice were randomly divided into A53T group (treated in the same manner as in the control group) and A53T + NBP group (treated with NBP 0.2 ml daily for 14 days). Several markers of mitochondrial fission and fusion and mitophagy were determined, and the behavioral, olfactory, and cognitive symptoms were assessed as well.ResultsIn the present study, it was observed that the A53T-α-synuclein PD mice exhibited anxiety-like behavioral disturbance, impairment of coordination ability, memory deficits, and olfactory dysfunction, loss of dopaminergic neurons, and α-synuclein accumulation. Meanwhile, the mitofusin 1 expression was significantly decreased, and the mitochondrial number and dynamin-related protein 1, Parkin, and LC3 levels were increased. The detected levels of all markers were reversed by NBP treatment, and the mitochondrial morphology was partially recovered.ConclusionIn the present study, a valuable neuropharmacological role of NBP has been established in the A53T-α-synuclein PD mouse model. Possible neuroprotective mechanisms might be that NBP is involved in the maintenance of mitochondrial dynamics including mitochondrial fission and fusion and clearance of damaged mitochondria. It is essential to perform further experiments to shed light on the precise mechanisms of NBP on mitochondrial homeostasis.


2021 ◽  
Vol 12 (5) ◽  
Author(s):  
Anthony R. Anzell ◽  
Garrett M. Fogo ◽  
Zoya Gurm ◽  
Sarita Raghunayakula ◽  
Joseph M. Wider ◽  
...  

AbstractMitochondrial dynamics and mitophagy are constitutive and complex systems that ensure a healthy mitochondrial network through the segregation and subsequent degradation of damaged mitochondria. Disruption of these systems can lead to mitochondrial dysfunction and has been established as a central mechanism of ischemia/reperfusion (I/R) injury. Emerging evidence suggests that mitochondrial dynamics and mitophagy are integrated systems; however, the role of this relationship in the context of I/R injury remains unclear. To investigate this concept, we utilized primary cortical neurons isolated from the novel dual-reporter mitochondrial quality control knockin mice (C57BL/6-Gt(ROSA)26Sortm1(CAG-mCherry/GFP)Ganl/J) with conditional knockout (KO) of Drp1 to investigate changes in mitochondrial dynamics and mitophagic flux during in vitro I/R injury. Mitochondrial dynamics was quantitatively measured in an unbiased manner using a machine learning mitochondrial morphology classification system, which consisted of four different classifications: network, unbranched, swollen, and punctate. Evaluation of mitochondrial morphology and mitophagic flux in primary neurons exposed to oxygen-glucose deprivation (OGD) and reoxygenation (OGD/R) revealed extensive mitochondrial fragmentation and swelling, together with a significant upregulation in mitophagic flux. Furthermore, the primary morphology of mitochondria undergoing mitophagy was classified as punctate. Colocalization using immunofluorescence as well as western blot analysis revealed that the PINK1/Parkin pathway of mitophagy was activated following OGD/R. Conditional KO of Drp1 prevented mitochondrial fragmentation and swelling following OGD/R but did not alter mitophagic flux. These data provide novel evidence that Drp1 plays a causal role in the progression of I/R injury, but mitophagy does not require Drp1-mediated mitochondrial fission.


2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Qing-Rui Wu ◽  
Dan-Lin Zheng ◽  
Pei-Ming Liu ◽  
Hui Yang ◽  
Lu-An Li ◽  
...  

AbstractMitochondrial dysfunction and impaired Ca2+ handling are involved in the development of diabetic cardiomyopathy (DCM). Dynamic relative protein 1 (Drp1) regulates mitochondrial fission by changing its level of phosphorylation, and the Orai1 (Ca2+ release-activated calcium channel protein 1) calcium channel is important for the increase in Ca2+ entry into cardiomyocytes. We aimed to explore the mechanism of Drp1 and Orai1 in cardiomyocyte hypertrophy caused by high glucose (HG). We found that Zucker diabetic fat rats induced by administration of a high-fat diet develop cardiac hypertrophy and impaired cardiac function, accompanied by the activation of mitochondrial dynamics and calcium handling pathway-related proteins. Moreover, HG induces cardiomyocyte hypertrophy, accompanied by abnormal mitochondrial morphology and function, and increased Orai1-mediated Ca2+ influx. Mechanistically, the Drp1 inhibitor mitochondrial division inhibitor 1 (Mdivi-1) prevents cardiomyocyte hypertrophy induced by HG by reducing phosphorylation of Drp1 at serine 616 (S616) and increasing phosphorylation at S637. Inhibition of Orai1 with single guide RNA (sgOrai1) or an inhibitor (BTP2) not only suppressed Drp1 activity and calmodulin-binding catalytic subunit A (CnA) and phosphorylated-extracellular signal-regulated kinase (p-ERK1/2) expression but also alleviated mitochondrial dysfunction and cardiomyocyte hypertrophy caused by HG. In addition, the CnA inhibitor cyclosporin A and p-ERK1/2 inhibitor U0126 improved HG-induced cardiomyocyte hypertrophy by promoting and inhibiting phosphorylation of Drp1 at S637 and S616, respectively. In summary, we identified Drp1 as a downstream target of Orai1-mediated Ca2+ entry, via activation by p-ERK1/2-mediated phosphorylation at S616 or CnA-mediated dephosphorylation at S637 in DCM. Thus, the Orai1–Drp1 axis is a novel target for treating DCM.


Biomolecules ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 450 ◽  
Author(s):  
Takeshi Tokuyama ◽  
Asei Hirai ◽  
Isshin Shiiba ◽  
Naoki Ito ◽  
Keigo Matsuno ◽  
...  

Mitochondria are highly dynamic organelles that constantly fuse, divide, and move, and their function is regulated and maintained by their morphologic changes. Mitochondrial disease (MD) comprises a group of disorders involving mitochondrial dysfunction. However, it is not clear whether changes in mitochondrial morphology are related to MD. In this study, we examined mitochondrial morphology in fibroblasts from patients with MD (mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) and Leigh syndrome). We observed that MD fibroblasts exhibited significant mitochondrial fragmentation by upregulation of Drp1, which is responsible for mitochondrial fission. Interestingly, the inhibition of mitochondrial fragmentation by Drp1 knockdown enhanced cellular toxicity and led to cell death in MD fibroblasts. These results suggest that mitochondrial fission plays a critical role in the attenuation of mitochondrial damage in MD fibroblasts.


2021 ◽  
Vol 13 ◽  
Author(s):  
Afzal Misrani ◽  
Sidra Tabassum ◽  
Qingwei Huo ◽  
Sumaiya Tabassum ◽  
Jinxiang Jiang ◽  
...  

Alzheimer’s disease (AD) is the most common neurodegenerative disorder worldwide. Mitochondrial dysfunction is thought to be an early event in the onset and progression of AD; however, the precise underlying mechanisms remain unclear. In this study, we investigated mitochondrial proteins involved in organelle dynamics, morphology and energy production in the medial prefrontal cortex (mPFC) and hippocampus (HIPP) of young (1∼2 months), adult (4∼5 months) and aged (9∼10, 12∼18 months) APP/PS1 mice. We observed increased levels of mitochondrial fission protein, Drp1, and decreased levels of ATP synthase subunit, ATP5A, leading to abnormal mitochondrial morphology, increased oxidative stress, glial activation, apoptosis, and altered neuronal morphology as early as 4∼5 months of age in APP/PS1 mice. Electrophysiological recordings revealed abnormal miniature excitatory postsynaptic current in the mPFC together with a minor connectivity change between the mPFC and HIPP, correlating with social deficits. These results suggest that abnormal mitochondrial dynamics, which worsen with disease progression, could be a biomarker of early-stage AD. Therapeutic interventions that improve mitochondrial function thus represent a promising approach for slowing the progression or delaying the onset of AD.


2019 ◽  
Author(s):  
Yanjun Kou ◽  
Yunlong He ◽  
Jiehua Qiu ◽  
Shu Yazhou ◽  
Fan Yang ◽  
...  

SUMMARYMagnaporthe oryzaecauses Blast disease, which is one of the most devastating infections in rice and several important cereal crops.M. oryzaeneeds to coordinate gene regulation, morphological changes, nutrient acquisition, and host evasion, in order to invade and proliferate within the plant tissues. Thus far, the molecular mechanisms underlying the regulation of invasive growthin plantahave remained largely unknown. We identified a precise filamentous-punctate-filamentous cycle in mitochondrial morphology duringMagnaporthe-Rice interaction. Interestingly, loss of either the mitochondrial fusion (MoFzo1) or fission (MoDnm1) machinery, or inhibition of mitochondrial fission using Mdivi-1 caused significant reduction inM. oryzaepathogenicity. Furthermore, exogenous carbon source(s) but not antioxidant treatment delayed such mitochondrial dynamics/transition during invasive growth. Such nutrient-based regulation of organellar dynamics preceded MoAtg24-mediated mitophagy, which was found to be essential for proper biotrophic development and invasive growthin planta. We propose that precise mitochondrial dynamics and mitophagy occur during the transition from biotrophy to necrotrophy, and are required for proper induction and establishment of the blast disease in rice.


2017 ◽  
Vol 28 (3) ◽  
pp. 396-410 ◽  
Author(s):  
Edward Cherok ◽  
Shan Xu ◽  
Sunan Li ◽  
Shweta Das ◽  
W. Alex Meltzer ◽  
...  

MARCH5, an OMM-associated E3 ubiquitin ligase, controls mitochondrial function. Despite its importance, the mechanism and factors controlling MARCH5 activity are largely unknown. Here we report that the MARCH5 C-terminal domain plays a critical role in degradation of MARCH5 substrates, likely by facilitating release of ubiquitinated proteins from the OMM. We also found that the mitochondrial fission proteins Drp1 and Mff negatively regulate MARCH5’s activity toward MiD49 and Mcl1. Knockouts of either Drp1 or Mff led to reduced expression, shorter half-lives, and increased ubiquitination of MiD49 and Mcl1. Effects of Mff and Drp1 depletion on degradation rates and ubiquitination of Mcl1 and MiD49 were eliminated in Drp1−/−/MARCH5−/− and Mff−/−/MARCH5−/− cells. Our data show that it is not mitochondrial morphology per se but rather Mff and Drp1 that directly control MARCH5. Consistently, we find that Mff is an integral component of the MARCH5/p97/Npl4 complex, which is also controlled by MARCH5’s C-terminal domain. Furthermore, not only mitochondrial fission but also fusion is regulated through Mff and Drp1 protein activities. Thus, in addition to their canonical roles in mitochondrial fission, Mff and Drp1 also act as regulatory factors that control mitochondrial fission and fusion.


2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
Alexandra G Moyzis ◽  
Robert L Thomas ◽  
Jennifer Kuo ◽  
Åsa B Gustafsson

The BCL-2 family proteins are important regulators of mitochondrial structure and integrity. MCL-1 is an anti-apoptotic BCL-2 protein that is highly expressed in the myocardium compared to the other anti-apoptotic proteins BCL-2 and BCL-X L. Recently, we reported that MCL-1 is essential for myocardial homeostasis. Cardiac-specific deletion of MCL-1 in mice led to rapid mitochondrial dysfunction, hypertrophy, and lethal cardiomyopathy. Surprisingly, MCL-1 deficient myocytes did not undergo apoptotic cell death. Instead, the cells displayed signs of mitochondrial deterioration and necrotic cell death, suggesting that MCL-1 has an additional role in maintaining mitochondrial function in cardiac myocytes. Similarly, deletion of MCL-1 in fibroblasts caused rapid mitochondrial fragmentation followed by cell death at 72 hours. Interestingly, the MCL-1 deficient fibroblasts retained cytochrome c in the mitochondria , confirming that the cells were not undergoing apoptotic cell death. We have also identified that MCL-1 localizes to the mitochondrial outer membrane (OM) and the matrix in the myocardium and that the two forms respond differently to stress. MCL-1 OM was rapidly degraded after myocardial infarction or fasting, whereas MCL-1 Matrix levels were maintained. Similarly, starvation of MEFs resulted in rapid degradation of MCL-1 OM , whereas MCL-1 Matrix showed delayed degradation. Treatment with the mitochondrial uncoupler FCCP led to rapid degradation of both forms. This suggests that the susceptibility to degradation is dependent on its localization and the nature of the stress. Our data also suggests that these two forms perform distinct functions in regulating mitochondrial morphology and survival. Overexpression of MCL-1 Matrix promoted mitochondrial fusion in fibroblasts under baseline conditions and protected cells against FCCP-mediated mitochondrial fission and clearance by autophagosomes. Thus, our data suggest that MCL-1 exists in two separate locations where it performs different functions. MCL-1 Matrix promotes mitochondrial fusion, which protects cells against excessive mitochondrial clearance during unfavorable conditions.


2017 ◽  
Vol 312 (3) ◽  
pp. H515-H527 ◽  
Author(s):  
Michael J. Tanner ◽  
Jingli Wang ◽  
Rong Ying ◽  
Tisha B. Suboc ◽  
Mobin Malik ◽  
...  

Intensive glycemic regulation has resulted in an increased incidence of hypoglycemia. Hypoglycemic burden correlates with adverse cardiovascular complications and contributes acutely and chronically to endothelial dysfunction. Prior data indicate that mitochondrial dysfunction contributes to hypoglycemia-induced endothelial dysfunction, but the mechanisms behind this linkage remain unknown. We attempt to determine whether clinically relevant low-glucose (LG) exposures acutely induce endothelial dysfunction through activation of the mitochondrial fission process. Characterization of mitochondrial morphology was carried out in cultured endothelial cells by using confocal microscopy. Isolated human arterioles were used to explore the effect LG-induced mitochondrial fission has on the formation of detrimental reactive oxygen species (ROS), bioavailability of nitric oxide (NO), and endothelial-dependent vascular relaxation. Fluorescence microscopy was employed to visualize changes in mitochondrial ROS and NO levels and videomicroscopy applied to measure vasodilation response. Pharmacological disruption of the profission protein Drp1 with Mdivi-1 during LG exposure reduced mitochondrial fragmentation among vascular endothelial cells (LG: 0.469; LG+Mdivi-1: 0.276; P = 0.003), prevented formation of vascular ROS (LG: 2.036; LG+Mdivi-1: 1.774; P = 0.005), increased the presence of NO (LG: 1.352; LG+Mdivi-1: 1.502; P = 0.048), and improved vascular dilation response to acetylcholine (LG: 31.6%; LG+Mdivi-1; 78.5% at maximum dose; P < 0.001). Additionally, decreased expression of Drp1 via siRNA knockdown during LG conditions also improved vascular relaxation. Exposure to LG imparts endothelial dysfunction coupled with altered mitochondrial phenotypes among isolated human arterioles. Disruption of Drp1 and subsequent mitochondrial fragmentation events prevents impaired vascular dilation, restores mitochondrial phenotype, and implicates mitochondrial fission as a primary mediator of LG-induced endothelial dysfunction. NEW & NOTEWORTHY Acute low-glucose exposure induces mitochondrial fragmentation in endothelial cells via Drp1 and is associated with impaired endothelial function in human arterioles. Targeting of Drp1 prevents fragmentation, improves vasofunction, and may provide a therapeutic target for improving cardiovascular complications among diabetics. Listen to this article’s corresponding podcast @ http://ajpheart.podbean.com/e/mitochondrial-dynamics-impact-endothelial-function/ .


Sign in / Sign up

Export Citation Format

Share Document