scholarly journals The plant-specific SCL30a SR protein regulates ABA-dependent seed traits and salt stress tolerance during germination

2021 ◽  
Author(s):  
Tom Laloum ◽  
Sofia D. Carvalho ◽  
Guiomar Martín ◽  
Dale Richardson ◽  
Tiago M. D. Cruz ◽  
...  

SR (serine/arginine-rich) proteins are conserved RNA-binding proteins best known as key regulators of splicing, which have also been implicated in other steps of gene expression. Despite mounting evidence for their role in plant development and stress responses, the molecular pathways underlying SR protein regulation of these processes remain elusive. Here we show that the plant-specific SCL30a SR protein negatively regulates abscisic acid (ABA) signaling to control important seed traits and salt stress responses during germination in Arabidopsis. The SCL30a gene is upregulated during seed imbibition and germination, and its loss of function results in smaller seeds displaying enhanced dormancy and elevated expression of ABA-responsive genes as well as of genes repressed during the germination process. Moreover, the knockout mutant is hypersensitive to ABA and high salinity, while transgenic plants overexpressing SCL30a exhibit reduced ABA sensitivity and enhanced tolerance to salt stress during seed germination. An ABA biosynthesis inhibitor rescues the mutant's enhanced sensitivity to stress, and epistatic analyses confirm that this hypersensitivity requires a functional ABA pathway. Finally, seed ABA levels are unchanged by altered SCL30a expression, indicating that the SR protein positively regulates stress tolerance during seed germination by reducing sensitivity to the phytohormone. Our results reveal a new key player in ABA-mediated control of early development and stress response, and underscore the role of plant SR proteins as important regulators of the ABA signaling pathway.

2020 ◽  
Vol 21 (19) ◽  
pp. 7239
Author(s):  
Ting Wang ◽  
Pan Li ◽  
Tianjiao Mu ◽  
Guangrui Dong ◽  
Chengchao Zheng ◽  
...  

UDP-glycosyltransferases (UGTs) play key roles in modulating plant development and responses to environmental challenges. Previous research reported that the Arabidopsis UDP-glucosyltransferase 74E2 (AtUGT74E2), which transfers glucose to indole-3-butyric acid (IBA), is involved in regulating plant architecture and stress responses. Here, we show novel and distinct roles of UGT74E2 in rice. We found that overexpression of AtUGT74E2 in rice could enhance seed germination. This effect was also observed in the presence of IBA and abscisic acid (ABA), as well as salt and drought stresses. Further investigation indicated that the overexpression lines had lower levels of free IBA and ABA compared to wild-type plants. Auxin signaling pathway gene expression such as for OsARF and OsGH3 genes, as well as ABA signaling pathway genes OsABI3 and OsABI5, was substantially downregulated in germinating seeds of UGT74E2 overexpression lines. Consistently, due to reduced IBA and ABA levels, the established seedlings were less tolerant to drought and salt stresses. The regulation of rice seed germination and stress tolerance could be attributed to IBA and ABA level alterations, as well as modulation of the auxin/ABA signaling pathways by UGT74E2. The distinct roles of UGT74E2 in rice implied that complex and different molecular regulation networks exist between Arabidopsis and rice.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yanan Liu ◽  
Shijie Liu ◽  
Huiying Shi ◽  
Jingyue Ma ◽  
Meng Jing ◽  
...  

Tudor staphylococcal nucleases (TSNs) are evolutionarily conserved RNA binding proteins, which include redundant TSN1 and TSN2 in Arabidopsis. It has been showed TSNs are the components of stress granules (SGs) and regulate plant growth under salt stress. In this study, we find a binding protein of TSN1, RH31, which is a DEAD-box RNA helicase (RH). Subcellular localization studies show that RH31 is mainly located in the nucleus, but under salinity, it translocates to the cytoplasm where it accumulates in cytoplasmic granules. After cycloheximide (CHX) treatment which can block the formation of SGs by interfering with mRNP homeostasis, these cytoplasmic granules disappeared. More importantly, RH31 co-localizes with SGs marker protein RBP47. RH31 deletion results in salt-hypersensitive phenotype, while RH31 overexpression causes more resistant to salt stress. In summary, we demonstrate that RH31, the TSN1 binding protein, is a component of plant SGs and participates in regulation of salt-stress tolerance in Arabidopsis.


Cancers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 3306
Author(s):  
Aneri Shah ◽  
Jonathan A. Lindquist ◽  
Lars Rosendahl ◽  
Ingo Schmitz ◽  
Peter R. Mertens

YB-1 belongs to the evolutionarily conserved cold-shock domain protein family of RNA binding proteins. YB-1 is a well-known transcriptional and translational regulator, involved in cell cycle progression, DNA damage repair, RNA splicing, and stress responses. Cell stress occurs in many forms, e.g., radiation, hyperthermia, lipopolysaccharide (LPS) produced by bacteria, and interferons released in response to viral infection. Binding of the latter factors to their receptors induces kinase activation, which results in the phosphorylation of YB-1. These pathways also activate the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), a well-known transcription factor. NF-κB is upregulated following cellular stress and orchestrates inflammatory responses, cell proliferation, and differentiation. Inflammation and cancer are known to share common mechanisms, such as the recruitment of infiltrating macrophages and development of an inflammatory microenvironment. Several recent papers elaborate the role of YB-1 in activating NF-κB and signaling cell survival. Depleting YB-1 may tip the balance from survival to enhanced apoptosis. Therefore, strategies that target YB-1 might be a viable therapeutic option to treat inflammatory diseases and improve tumor therapy.


2019 ◽  
Vol 144 (2) ◽  
pp. 79-91 ◽  
Author(s):  
Zhigang Ouyang ◽  
Huihui Duan ◽  
Lanfang Mi ◽  
Wei Hu ◽  
Jianmei Chen ◽  
...  

In eukaryotic systems, messenger RNA regulations, including splicing, 3′-end formation, editing, localization, and translation, are achieved by different RNA-binding proteins and noncoding RNAs. The YTH domain is a newly identified RNA-binding domain that was identified by comparing its sequence with that of splicing factor YT521-B. Previous study showed that the YTH gene plays an important role in plant resistance to abiotic and biotic stress. In this study, 211 YTH genes were identified in 26 species that represent four major plant lineages. Phylogenetic analysis revealed that these genes could be divided into eight subgroups. All of the YTH genes contain a YT521 domain and have different structures. Ten YTH genes were identified in navel orange (Citrus sinensis). The expression profiles of these CitYTH genes were analyzed in different tissues and at different fruit developmental stages, and CitYTH genes displayed distinct expression patterns under heat, cold, salt, and drought stress. Furthermore, expression of the CitYTH genes in response to exogenous hormones was measured. Nuclear localization was also confirmed for five of the proteins encoded by these genes after transient expression in Nicotiana benthamiana cells. This study provides valuable information on the role of CitYTHs in the signaling pathways involved in environmental stress responses in Citrus.


2020 ◽  
Vol 21 (12) ◽  
pp. 4548 ◽  
Author(s):  
Kwanuk Lee ◽  
Hunseung Kang

Organellar gene expression (OGE) in chloroplasts and mitochondria is primarily modulated at post-transcriptional levels, including RNA processing, intron splicing, RNA stability, editing, and translational control. Nucleus-encoded Chloroplast or Mitochondrial RNA-Binding Proteins (nCMRBPs) are key regulatory factors that are crucial for the fine-tuned regulation of post-transcriptional RNA metabolism in organelles. Although the functional roles of nCMRBPs have been studied in plants, their cellular and physiological functions remain largely unknown. Nevertheless, existing studies that have characterized the functions of nCMRBP families, such as chloroplast ribosome maturation and splicing domain (CRM) proteins, pentatricopeptide repeat (PPR) proteins, DEAD-Box RNA helicase (DBRH) proteins, and S1-domain containing proteins (SDPs), have begun to shed light on the role of nCMRBPs in plant growth, development, and stress responses. Here, we review the latest research developments regarding the functional roles of organellar RBPs in RNA metabolism during growth, development, and abiotic stress responses in plants.


2019 ◽  
Vol 20 (3) ◽  
pp. 709 ◽  
Author(s):  
Haoshuang Zhan ◽  
Xiaojun Nie ◽  
Ting Zhang ◽  
Shuang Li ◽  
Xiaoyu Wang ◽  
...  

Salt stress is one of the most serious limiting factors in worldwide agricultural production, resulting in huge annual yield loss. Since 1995, melatonin (N-acetyl-5-methoxytryptamine)—an ancient multi-functional molecule in eukaryotes and prokaryotes—has been extensively validated as a regulator of plant growth and development, as well as various stress responses, especially its crucial role in plant salt tolerance. Salt stress and exogenous melatonin lead to an increase in endogenous melatonin levels, partly via the phyto-melatonin receptor CAND2/PMTR1. Melatonin plays important roles, as a free radical scavenger and antioxidant, in the improvement of antioxidant systems under salt stress. These functions improve photosynthesis, ion homeostasis, and activate a series of downstream signals, such as hormones, nitric oxide (NO) and polyamine metabolism. Melatonin also regulates gene expression responses to salt stress. In this study, we review recent literature and summarize the regulatory roles and signaling networks involving melatonin in response to salt stress in plants. We also discuss genes and gene families involved in the melatonin-mediated salt stress tolerance.


2020 ◽  
Vol 21 (5) ◽  
pp. 1595 ◽  
Author(s):  
Hye-Yeon Seok ◽  
Linh Vu Nguyen ◽  
Doai Van Nguyen ◽  
Sun-Young Lee ◽  
Yong-Hwan Moon

Previously, we reported that overexpression of AtRH17, an Arabidopsis DEAD-box RNA helicase gene, confers salt stress-tolerance via a pathway other than the well-known salt stress-responsive pathways. To decipher the salt stress-responsive pathway in AtRH17-overexpressing transgenic plants (OXs), we performed RNA-Sequencing and identified 397 differentially expressed genes between wild type (WT) and AtRH17 OXs. Among them, 286 genes were upregulated and 111 genes were downregulated in AtRH17 OXs relative to WT. Gene ontology annotation enrichment and KEGG pathway analysis showed that the 397 upregulated and downregulated genes are involved in various biological functions including secretion, signaling, detoxification, metabolic pathways, catabolic pathways, and biosynthesis of secondary metabolites as well as in stress responses. Genevestigator analysis of the upregulated genes showed that nine genes, namely, LEA4-5, GSTF6, DIN2/BGLU30, TSPO, GSTF7, LEA18, HAI1, ABR, and LTI30, were upregulated in Arabidopsis under salt, osmotic, and drought stress conditions. In particular, the expression levels of LEA4-5, TSPO, and ABR were higher in AtRH17 OXs than in WT under salt stress condition. Taken together, our results suggest that a high AtRH17 expression confers salt stress-tolerance through a novel salt stress-responsive pathway involving nine genes, other than the well-known ABA-dependent and ABA-independent pathways.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jun Liu ◽  
Menghao Yu ◽  
Yixin Ge ◽  
Yanli Tian ◽  
Baishi Hu ◽  
...  

The post-transcriptional regulator RsmA globally controls gene expression in bacteria. Previous studies showed that RsmA2 and RsmA3 played critical roles in regulating type III secretion system (T3SS), motility, syringafactin, and alginate productions in Pseudomonas syringae pv. tomato strain DC3000 (PstDC3000). In this study, we investigated global gene expression profiles of the wild-type PstDC3000, the rsmA3 mutant, and the rsmA2/A3 double mutant in the hrp-inducing minimum medium (HMM) and King’s B (KB) medium. By comparing the rsmA2/A3 and rsmA3 mutants to PstDC3000, a total of 1358 and 1074 differentially expressed genes (DEGs) in HMM, and 870 and 1463 DEGs in KB were uncovered, respectively. When comparing the rsmA2/A3 mutant with the rsmA3 mutant, 277 and 741 DEGs in HMM and KB, respectively, were revealed. Transcriptomic analysis revealed that the rsmY, rsmZ, and rsmX1-5 non-coding small RNAs (ncsRNAs) were positively affected by RsmA2 and RsmA3, while RsmA3 positively regulates the expression of the rsmA2 gene and negatively regulates both rsmA1 and rsmA5 gene expression. Comparative transcriptomic analysis showed that RsmA2 and RsmA3 synergistically influenced the expression of genes involved in T3SS and alginate biosynthesis in HMM and chemotaxis in KB. RsmA2 and RsmA3 inversely affected genes involved in syringafactin production in HMM and ribosomal protein biosynthesis in KB. In addition, RsmA2 played a major role in influencing genes involved in sarcosine and thiamine biosynthesis in HMM and in mannitol and phosphate metabolism in KB. On the other hand, genes involved in fatty acid metabolism, cellulose biosynthesis, signal transduction, and stress responses were mainly impacted by RsmA3 in both HMM and KB; whereas RsmA3 played a major role in controlling genes involved in c-di-GMP, phosphate metabolism, chemotaxis, and capsular polysaccharide in HMM. Furthermore, regulation of syringafactin production and oxidative stress by RsmA2 and RsmA3 was experimentally verified. Our results suggested the potential interplay among the RsmA proteins, which exhibit distinct and overlapping roles in modulating virulence and survival in P. syringae under different nutritional conditions.


Agronomy ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 250 ◽  
Author(s):  
Sara Rosa Téllez ◽  
Rodoldphe Kanhonou ◽  
Carlos Castellote Bellés ◽  
Ramón Serrano ◽  
Paula Alepuz ◽  
...  

Salt stress drastically reduce crop productivity. In order to identify genes that could improve crop salt tolerance, we randomly expressed a cDNA library of the halotolerant sugar beet in a sodium-sensitive yeast strain. We identified six sugar beet genes coding for RNA binding proteins (RBP) able to increase the yeast Na+-tolerance. Two of these genes, named Beta vulgaris Salt Tolerant 3 (BvSATO3) and BvU2AF35b, participate in RNA splicing. The other four BvSATO genes (BvSATO1, BvSATO2, BvSATO4 and BvSATO6) are putatively involved in other processes of RNA metabolism. BvU2AF35b improved the growth of a wild type yeast strain under salt stress, and also in mutant backgrounds with impaired splicing, thus confirming that splicing is a target of salt toxicity. To validate the yeast approach, we characterized BvSATO1 in sugar beet and Arabidopsis. BvSATO1 expression was repressed by salt treatment in sugar beet, suggesting that this gene could be a target of salt toxicity. Expression of BvSATO1 in Arabidopsis increased the plant salt tolerance. Our results suggest that not only RNA splicing, but RNA metabolic processes such as such as RNA stability or nonsense-mediated mRNA decay may also be affected by salt stress and could be biotechnological targets for crop improvement.


Life ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 288
Author(s):  
Victor Muleya ◽  
Claudius Marondedze

RNA-binding proteins (RBPs) are typical proteins that bind RNA through single or multiple RNA-binding domains (RBDs). These proteins have a functional role in determining the fate or function of the bound RNAs. A few hundred RBPs were known through in silico prediction based on computational assignment informed by structural similarity and the presence of classical RBDs. However, RBPs lacking such conventional RBDs were omitted. Owing to the recent mRNA interactome capture technology based on UV-crosslinking and fixing proteins to their mRNA targets followed by affinity capture purification and identification of RBPs by tandem mass spectrometry, several hundreds of RBPs have recently been discovered. These proteome-wide studies have colossally increased the number of proteins implicated in RNA binding and unearthed hundreds of novel RBPs lacking classical RBDs, such as proteins involved in intermediary metabolism. These discoveries provide wide insights into the post-transcriptional gene regulation players and their role in plant signaling, such as environmental stress conditions. In this review, novel discoveries of RBPs are explored, particularly on the evolving knowledge of their role in stress responses. The molecular functions of these RBPs, particularly focusing on those that do not have classical RBDs, are also elucidated at the systems level.


Sign in / Sign up

Export Citation Format

Share Document