scholarly journals A New Mouse Model of Diffuse Midline Glioma to Test Targeted Immunotherapies

2021 ◽  
Author(s):  
Maggie D Seblani ◽  
Markella Zannikou ◽  
Joseph Duffy ◽  
Rebecca N Levine ◽  
Qianli Liu ◽  
...  

BACKGROUND: Diffuse midline gliomas remain incurable, with consistently poor outcomes in children despite radiotherapy. Immunotherapeutic approaches hold promise, with the integration of the host's immune system fundamental to their design. Here, we describe a new, genetically engineered immunocompetent model that incorporates interleukin 13 receptor alpha 2 (IL13Rα2), a tumor-associated antigen, which is suitable for further evaluation of the antitumor activity of IL13Rα2-targeted immunotherapeutics in preclinical studies. METHODS: The RCAS-Tv-a delivery system was used to induce gliomagenesis through overexpression of PDGFB and p53 deletion with and without human IL13Rα2 in Nestin-Tva; p53fl/fl mice. Neonatal pups were infected with Cre recombinase and PDGFB+IL13Rα2 or Cre recombinase and PDGFB in forth ventricle or right cortex of the brain to model diffuse midline glioma and pediatric high-grade glioma, respectively. Immunoblotting and flow cytometry was used to confirm target expression. Kaplan-Meier survival curves were established to compare tumor latency in both models. Tumor tissue was analyzed through immunohistochemistry and H&E staining. Cell lines generated from tumor-bearing mice were used for in vitro studies and orthotopic injections. RESULTS: The protein expression of PDGFB and IL13Rα2 was confirmed by flow cytometry and western blot. In both groups, de novo tumors developed without significant difference in median survival between PDGFB and p53 loss (n=25, 40 days) and PDGB, IL13Rα2, and p53 loss (n=33, 38 days, p=0.62). Tumors demonstrated characteristics of high-grade glioma such as infiltration, palisading necrosis, microvascular proliferation, high Ki-67 index, heterogeneous IL13Rα2 expression, and CD11b+ macrophages, along with a low proportion of CD3+ T cells. Orthotopic tumors developed from cell lines retained histopathological characteristics of de novo tumors. Mice orthotopically implanted with cells in the 4th ventricle or right cortex showed a median survival of 42 days and 41 (p=0.56) days, respectively. CONCLUSION: Generation of de novo tumors using the RCAS-Tv-a delivery system was successful, with tumors possessing histopathologic features common to pediatric diffuse gliomas. The development of these models opens the opportunity for preclinical assessment of IL13Rα2-directed immunotherapies with the potential for clinical translation.

Author(s):  
Lisa Millgård Sagberg ◽  
Asgeir S. Jakola ◽  
Ingerid Reinertsen ◽  
Ole Solheim

AbstractDue to the lack of reliable prognostic tools, prognostication and surgical decisions largely rely on the neurosurgeons’ clinical prediction skills. The aim of this study was to assess the accuracy of neurosurgeons’ prediction of survival in patients with high-grade glioma and explore factors possibly associated with accurate predictions. In a prospective single-center study, 199 patients who underwent surgery for high-grade glioma were included. After surgery, the operating surgeon predicted the patient’s survival using an ordinal prediction scale. A survival curve was used to visualize actual survival in groups based on this scale, and the accuracy of clinical prediction was assessed by comparing predicted and actual survival. To investigate factors possibly associated with accurate estimation, a binary logistic regression analysis was performed. The surgeons were able to differentiate between patients with different lengths of survival, and median survival fell within the predicted range in all groups with predicted survival < 24 months. In the group with predicted survival > 24 months, median survival was shorter than predicted. The overall accuracy of surgeons’ survival estimates was 41%, and over- and underestimations were done in 34% and 26%, respectively. Consultants were 3.4 times more likely to accurately predict survival compared to residents (p = 0.006). Our findings demonstrate that although especially experienced neurosurgeons have rather good predictive abilities when estimating survival in patients with high-grade glioma on the group level, they often miss on the individual level. Future prognostic tools should aim to beat the presented clinical prediction skills.


2019 ◽  
Vol 1 (Supplement_2) ◽  
pp. ii44-ii44
Author(s):  
Yoshihiro Tsukamoto ◽  
Manabu Natsumeda ◽  
Masayasu Okada ◽  
Takeyoshi Eda ◽  
Junichi Yoshimura ◽  
...  

Abstract INTRODUCTION Bevacizumab (BEV) therapy has been used for pediatric high grade glioma,however the evidence and effectiveness are not understood yet. METHODS We report 7 cases (age 2 to 10 years old) of pediatric high grade glioma treated with BEV. One case is thalamic diffuse midline glioma H3K27 mutant (DMGH3K27M),one case is brain stem DMGH3K27M,one case is cerebellar high grade glioma,and 4 cases are diffuse intrinsic pontine glioma (DIPG) diagnosed clinically without biopsy. 5 cases were treated with BEV when diagnosed as recurrence after chemo-radiotherapy. One case was treated for rapid tumor progression during radiotherapy. One case was started on BEV therapy with radiation and concomitant temozolomide therapy. RESULT The number of times of BEV was 2 to 13 times (median 7 times). The period of BEV was 1 to 9 months (median 4 months). One case which was treated with BEV at rapid progression during radiation showed good response on imaging and improvement of symptoms. 4 of 5 cases who were treated at recurrence clinically showed mild symptomatic improvement. One case treated with BEV and radiotherapy initially was not evaluated. The adverse effects of BEV included wound complication of tracheostomy and rash. CONCLUSION BEV showed good response for rapid progression during radiotherapy,and mild response for recurrence cases. BEV is thought to be an effective therapeutic agent for pediatric HGG at recurrence and rapid tumor progression during radiotherapy.


2015 ◽  
Vol 11 (6) ◽  
pp. 1612-1621 ◽  
Author(s):  
Roberta Leone ◽  
Paola Giussani ◽  
Sara De Palma ◽  
Chiara Fania ◽  
Daniele Capitanio ◽  
...  

NO exposure of two human high grade glioma cell lines (CCF-STTG1 and T98G) characterized by a different proteomic profile shows differential ceramide distribution and proliferation.


2019 ◽  
Vol 10 (02) ◽  
pp. 185-193
Author(s):  
Shyam Sundar Krishnan ◽  
Shanmugam Muthiah ◽  
Shilpa Rao ◽  
Suganthi Srinivasan Salem ◽  
Vasudevan Chakravarthy Madabhushi ◽  
...  

ABSTRACT Introduction: Gliomas are the most common brain tumors in adults originating from the glial cells. Glioblastoma multiforme is the most malignant and frequent among all gliomas. In recent years, the antibody Mindbomb Homolog-1 (MIB-1) has evolved as a measure of the proliferative nature of the glial tumors. This study aims to investigate the MIB-1 index value as an independent prognostic factor in high-grade gliomas and its correlation with outcome and survival. Materials and Methods: Mean MIB-1 index was determined in 51 high-grade glioma tissue samples in formalin. Its correlation with outcome by assessing the clinicoradiological parameters and median survival of patients in months were assessed. Survival analysis was studied by using the Kaplan–Meier bivariate analysis and Cox proportional ratio. Results: Preoperative Karnofsky Performance Score, WHO-PS, Neurological Performance Scale, and Mini–Mental Status Examination (MMSE) were statistically significant with respect to outcome and survival, whereas tumor factors such as size and perilesional edema were not. In particular, midline-crossing tumors and deep-seated tumors were significantly associated with high MIB-1 index and by correlation with outcome. There were significantly higher number (P < 0.0001) of patients with Grade IV tumors, with an MIB-1 index value above an arbitrary cutoff of 10% compared to Grade III tumors. In addition, median survival period of patients with low MIB-1 index was longer irrespective of tumor grade. Conclusion: Significant correlation between high-grade glioma and MIB-1 index suggests MIB-1 index to be a good prognostic tool, with MIB-1 index and midline-crossing variables being independent prognostic parameters.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1581-1581
Author(s):  
Frederick Lansigan ◽  
Wilson L Davis ◽  
Nancy Kuemmerle ◽  
Leslie E Lupien ◽  
Valeriya Posternak ◽  
...  

Abstract Abstract 1581 Background It is well-recognized that de novo long chain fatty acid (FA) synthesis, driven by the key enzyme fatty acid synthase (FASN), is crucial for the growth and survival of many types of cancer cells. We and others have observed FASN protein expression in diffuse large B-cell lymphoma (DLBCL) tumors. Furthermore, we have shown that higher levels of FASN in DLBCL tumors strongly predicted inferior survival, which was independent from the international prognostic index. We also recently demonstrated that, in addition to FA synthesis, various cancer cells can acquire FA from circulating lipoproteins, using the secreted enzyme lipoprotein lipase (LPL), and that this promotes cell growth. DLBCL, however, has never been examined in this regard. In this study, we investigated the functional significance of both de novo FA synthesis via FASN and exogenous FA uptake via LPL in DLBCL. Methods Levels of FASN and LPL mRNAs in DLBCL cell lines (SUDHL4, SUDHL10, OCI-LY3, OCI-LY19) were studied using reverse transcriptase polymerase chain reaction. We determined FASN and LPL protein expression by flow cytometry using a novel anti-LPL antibody that we developed. DLBCL cell lines were cultured +/− Cerulenin (an inhibitor of FASN), Orlistat (an inhibitor of FASN and LPL), or in lipoprotein-depleted serum +/− supplementation with very low density lipoprotein (VLDL) particles. The MTT assay was used to assess cell proliferation. Results DLBCL cell lines exhibited >10-fold variation in levels of FASN mRNA. Cerulenin and Orlistat each caused dose-dependent inhibition of proliferation of each cell line. The cells were partially rescued by the addition of palmitic acid, the FA product of FASN. Surprisingly, flow cytometry revealed that SUDHL4 and OCI-LY3 cells, which did not secrete LPL or show detectable LPL activity, displayed the enzyme on the cell surface. Moreover, in stark contrast to several other cancer cell lines, DLBCL cells were exquisitely sensitive to withdrawal of lipoproteins from the culture media. Indeed, 75–95% of the cells underwent apoptosis after only 24 hours in lipoprotein-depleted serum. In complete serum, the provision of VLDL particles did not rescue DLBCL cells from FA synthesis inhibition using Cerulenin, suggesting that the serum contains sufficient lipoproteins to saturate the FA uptake system. This prediction was validated in experiments utilizing lipoprotein-depleted serum, in which add-back of VLDL particles completely rescued the cells from Cerulenin-induced demise in a dose-related manner, with full restoration at approximately 100–200mcg/ml of VLDL. Conclusions Our data demonstrate that DLBCL cells employ both de novo FA synthesis via FASN and exogenous FA uptake using LPL to satisfy their strict requirement for FA. Interference with either pathway, using FASN inhibitors or lipoprotein-depleted serum, is cytotoxic indicating that neither alone is sufficient to support proliferation. Further, DLBCL cells show a striking dependency on exogenous FA of dietary origin compared with all other cancer cells we have examined. The observation that the cell lines can be rescued by provision of VLDL particles strongly supports the functional significance of the exogenous FA uptake pathway for DLBCL. Our data thus demonstrate that the extracellular lipase LPL is critical for the growth and survival of DLBCL cells. Surprisingly, the cells deploy LPL to their surface, and we speculate that this promotes efficient FA acquisition from circulating lipoproteins. Recognition that DLBCL relies on both synthesis and uptake of FA will provide guidance for drug development and dietary modifications to effectively target the metabolic requirements of this tumor. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi6-vi6
Author(s):  
Tina Huang ◽  
Juan Wang ◽  
Ye Hu ◽  
Andrea Piunti ◽  
Elizabeth Bartom ◽  
...  

Abstract INTRODUCTION Pediatric high-grade gliomas (pHGGs), including glioblastoma multiforme (GBM) and diffuse intrinsic pontine glioma (DIPG), are highly morbid brain tumors. Up to 80% of DIPGs harbor a somatic missense mutation in genes encoding Histone H3. To investigate whether the H3K27M mutant protein is associated with distinct chromatin structure affecting transcription regulation, we generated the first high-resolution Hi-C and ATAC-Seq maps of pHGG cell lines, and integrated these with tissue and cell genomic data. METHODS We generated sequencing data from patient-derived cell lines (DIPG n=6, GBM n=3, normal n=2) and frozen tissue specimens (DIPG n=1, normal brainstem n=1). Analyses included cell line RNA-Seq, ChIP-Seq (H3K27ac, H3K27me3, H3K27M) and genome-wide chromatin conformation capture (Hi-C), as well as tissue ATAC-Seq. Publicly available pediatric glioma tissue ChIP-Seq data was integrated with cell data. CRISPR knock-down of target enhancer regions was performed. RESULTS We identified tumor-specific enhancers and regulatory networks for known oncogenes in DIPG and GBM. In DIPG, FOX, SOX, STAT and SMAD families were among top H3K27Ac enriched motifs. Significant differences in Topologically Associating Domains (TADs) and DNA looping were observed at OLIG2 and MYCN in H3K27M mutant DIPG, relative to wild-type GBM and normal cells. Pharmacologic treatment targeting H3K27Ac (BET and Bromodomain inhibition) altered these 3D structures. Functional analysis of differentially enriched enhancers in DIPG implicated SOX2, SUZ12, and TRIM24 as top activated upstream regulators. Distinct genomic structural variations leading to enhancer hijacking and gene co-amplification were identified at A2M, JAG2, and FLRT1. CONCLUSION We show genome structural variations enhancer-promoter interactions that impact gene expression in pHGG in the presence and absence of the H3K27M mutation. Our results imply that tridimensional genome alterations may play a critical role in the pHGG epigenetic landscape and thereby contribute to pediatric gliomagenesis. Further studies examining the impact of the alterations is therefore underway.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
George A. Alexiou ◽  
Xanthi Xourgia ◽  
Evrysthenis Vartholomatos ◽  
Spyridon Tsiouris ◽  
John A. Kalef-Ezra ◽  
...  

Tc-Tetrofosmin (Tc-TF) and Tc-Sestamibi (Tc-MIBI) are SPECT tracers that have been used for brain tumor imaging. Tumor’s multidrug resistance phenotype, namely, P-glycoprotein (p-gp), and the multidrug resistance related proteins (MRPs) expression have been suggested to influence both tracers’ uptake. In the present study we set out to compare Tc-MIBI uptake in high-grade glioma cell lines and to investigate the influence of gliomas p-gp expression on both tracers’ uptake. We used four glioma cell lines (U251MG, A172, U87MG, and T98G). The expression of p-gp protein was evaluated by flow cytometry. Twenty μCi (7.4·105 Bq) of Tc-TF and Tc-MIBI were used. The radioactivity in the cellular lysate was measured with a dose calibrator. P-gp was significantly expressed only in the U251MG cell line (). In all gliomas cell lines (U251MG, U87MG, A172, and T98G) the Tc-TF uptake was significantly higher than Tc-sestamibi. The U251MG cell line, in which significant p-gp expression was documented, exhibited the strongest uptake difference. Tc-TF uptake was higher than Tc-MIBI in all studied high-grade glioma cell lines. Thus, Tc-TF may be superior to Tc-MIBI for glioma imaging in vivo.


2014 ◽  
Vol 2 (1) ◽  
pp. 48-53 ◽  
Author(s):  
Michael Back ◽  
Cecelia E. Gzell ◽  
Marina Kastelan ◽  
Linxin Guo ◽  
Helen R. Wheeler

AbstractBackgroundClinical studies of re-irradiation (ReRT) for relapsed high-grade glioma (HGG) have generally reported the use of small volume ReRT techniques such as stereotactic radiosurgery in selected patients with isolated focal relapse. This study reports the outcome with large-volume ReRT to manage the more common mescenario of extensive diffuse relapse of HGG.MethodsAll HGG patients managed with an overlapping second course of radiation therapy (RT) for refractory progression of HGG between October 2009 and April 2013 were included. ReRT was initially used with bevacizumab (BEV), then used when disease was refractory to BEV, and finally used upfront with BEV-naïve patients. Tumor volume (GTV) and specific RT dosimetry factors, including the target volume treated (PTV), and cumulative RT dose maximum (Dmax), were analyzed. Median survival post ReRT was calculated using the Kaplan-Meier method and SPPS v19 software.ResultsEighteen HGG participants with refractory, bulky contrast-enhancing disease received ReRT. Thirteen participants had a maximum tumor diameter &gt;5 cm, and median GTV was 54 cm3. Seven participants had BEV-refractory disease, and 8 participants were BEV naïve. ReRT dose was 35–40 Gy in 15 fractions; median PTV was 133 cm3, and median Dmax was 98.2 Gy. Median survival post ReRT for all participants was 8 months (95%CI, 5.8–10.2 months); with 10 months and 3 months for the BEV-naïve and BEV-refractory participants, respectively (P = .024). Two early participants, who were managed without BEV, were later salvaged with BEV, including one who required craniotomy for radiation necrosis at 6 weeks post RT. No other significant morbidity was reported.ConclusionReRT combined with BEV is a feasible salvage treatment option for diffuse refractory HGG.


Sign in / Sign up

Export Citation Format

Share Document