scholarly journals Loss of Prm1 leads to defective chromatin protamination, impaired PRM2 processing, reduced sperm motility and subfertility in male mice

2021 ◽  
Author(s):  
Gina Esther Merges ◽  
Julia Meier ◽  
Simon Schneider ◽  
Alexander Kruse ◽  
Andreas Christian Fröbius ◽  
...  

One of the key events during spermiogenesis is the hypercondensation of chromatin by substitution of the majority of histones by protamines. In humans and mice, protamine 1 (PRM1/Prm1) and protamine 2 (PRM2/Prm2), are expressed in a species-specific ratio. Using CRISPR-Cas9-mediated gene editing we generated Prm1-deficient mice and demonstrate, that Prm1+/- mice are subfertile while Prm1-/- are infertile. Prm1-deficiency was associated with higher levels of 8-OHdG, an indicator for reactive oxygen mediated DNA-damage. While Prm1+/- males displayed moderate increased levels of 8-OHdG virtually all sperm of Prm1-/- males displayed ROS mediated DNA damage. Consequently, DNA integrity was slightly hampered in Prm1+/-, while DNA was completely fragmented in Prm1-/- animals. Interestingly CMA3 staining which indicates protamine-free DNA revealed, that Prm1+/- sperm displayed high levels (93%), compared to Prm2+/- (29%) and WT (2%) sperm. This is not due to increased histone retention as demonstrated by mass spectrometry (MassSpec) of nuclear proteins in Prm1+/- sperm. Further analysis of the MassSpec data from sperm nuclear proteome revealed, that only one protein (RPL31) is significantly higher abundant in Prm1+/- compared to WT sperm. Comparison of the proteome from Prm1-/- and Prm2-/- to WT suggested, that there are a small number of proteins which differ in abundance. However, their function was not linked mechanistically to primary defects seen in Prm1-/- mice and rather represent a general stress response. Interestingly, using acid urea gels we found that sperm from Prm1+/- and Prm1-/- mice contain a high level of unprocessed, full-length PRM2. Prm2 is transcribed as a precursor protein which, upon binding to DNA is successively processed. Further, the overall ratio of PRM1:PRM2 is skewed from 1:2 in WT to 1:5 in Prm1+/- animals. Our results reveal that Prm1 is required for proper processing of PRM2 to produce the mature PRM2 which, together with Prm1 is able to hypercondense DNA. Hence, the species specific PRM1:PRM2 ratio has to be precisely controlled in order to retain full fertility.

2021 ◽  
Author(s):  
Lena Arévalo ◽  
Gina Esther Merges ◽  
Simon Schneider ◽  
Franka Enow Oben ◽  
Isabelle Neumann ◽  
...  

Protamines are unique sperm-specific proteins that package and protect paternal chromatin until fertilization. A subset of mammalian species expresses two protamines (PRM1 and PRM2), while in others PRM1 is sufficient for sperm chromatin packaging. Alterations of the species-specific ratio between PRM1 and PRM2 are associated with infertility. Unlike PRM1, PRM2 is generated as a precursor protein consisting of a highly conserved N-terminal domain, termed cleaved PRM2 (cP2), which is consecutively trimmed off during chromatin condensation. The carboxyterminal part, called mature PRM2 (mP2), interacts with DNA and mediates chromatin hyper-condensation, together with PRM1. The removal of the cP2 domain is believed to be imperative for proper chromatin condensation and the prevention of DNA damage. Yet, the role of cP2 is not yet understood. Using CRISPR-Cas9 mediated gene editing, we generated mice lacking the cP2 domain while the mP2 is still expressed. We show that deletion of one allele of the cP2 domain is sufficient to render male mice infertile. cP2 deficient sperm show incomplete PRM2 incorporation, retention of transition proteins and a severely altered protamine ratio. During epididymal transit, cP2 deficient sperm seem to undergo ROS mediated degradation leading to complete DNA fragmentation, inviability and immotility of mature sperm. The cP2 domain therefore seems to be necessary for the complex crosstalk leading to the successive and complete removal of transition proteins and complete protamination of sperm chromatin. Overall, we present the first step towards understanding the role of the cP2 domain in paternal chromatin packaging and open up avenues for further research.


Author(s):  
I. A. Umnyagina ◽  
L. A. Strakhova ◽  
T. V. Blinova

In the blood serum of 70% individuals exposed to harmful factors of the working environment, a high level of oxidative stress and the DNA damage marker 8-Hydroxy-2’-Deoxyguanosine (8-OHdG) were detected.


Author(s):  
G N Subramanian ◽  
M Lavin ◽  
H A Homer

Abstract Premature loss of ovarian activity before 40 years of age is known as primary ovarian insufficiency (POI) and occurs in ∼1% of women. A more subtle decline in ovarian activity, known as premature ovarian ageing (POA), occurs in ∼10% of women. Despite the high prevalence of POA, very little is known regarding its genetic causation. Senataxin (SETX) is an RNA/DNA helicase involved in repair of oxidative stress-induced DNA damage. Homozygous mutation of SETX leads to the neurodegenerative disorder, ataxia oculomotor apraxia type 2 (AOA2). There have been reports of POI in AOA2 females suggesting a link between SETX and ovarian ageing. Here, we studied female mice lacking either one (Setx+/−) or both (Setx−/−) copies of SETX over a 12- to 14-month period. We find that DNA damage is increased in oocytes from 8-month-old Setx+/− and Setx−/− females compared with Setx+/+ oocytes leading to a marked reduction in all classes of ovarian follicles at least 4 months earlier than typically occurs in female mice. Furthermore, during a 12-month long mating trial, Setx+/− and Setx−/− females produced significantly fewer pups than Setx+/+ females from 7 months of age onwards. These data show that SETX is critical for preventing POA in mice, likely by preserving DNA integrity in oocytes. Intriguingly, heterozygous Setx loss causes an equally severe impact on ovarian ageing as homozygous Setx loss. Because heterozygous SETX disruption is less likely to produce systemic effects, SETX compromise could underpin some cases of insidious POA.


Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 750
Author(s):  
Werner E. G. Müller ◽  
Meik Neufurth ◽  
Shunfeng Wang ◽  
Heinz C. Schröder ◽  
Xiaohong Wang

The anti-cancer antitumor antibiotic bleomycin(s) (BLM) induces athyminic sites in DNA after its activation, a process that results in strand splitting. Here, using A549 human lung cells or BEAS-2B cells lunc cells, we show that the cell toxicity of BLM can be suppressed by addition of inorganic polyphosphate (polyP), a physiological polymer that accumulates and is released from platelets. BLM at a concentration of 20 µg ml−1 causes a decrease in cell viability (by ~70%), accompanied by an increased DNA damage and chromatin expansion (by amazingly 6-fold). Importantly, the BLM-caused effects on cell growth and DNA integrity are substantially suppressed by polyP. In parallel, the enlargement of the nuclei/chromatin in BLM-treated cells (diameter, 20–25 µm) is normalized to ~12 µm after co-incubation of the cells with BLM and polyP. A sequential application of the drugs (BLM for 3 days, followed by an exposure to polyP) does not cause this normalization. During co-incubation of BLM with polyP the gene for the BLM hydrolase is upregulated. It is concluded that by upregulating this enzyme polyP prevents the toxic side effects of BLM. These data might also contribute to an application of BLM in COVID-19 patients, since polyP inhibits binding of SARS-CoV-2 to cellular ACE2.


Reproduction ◽  
2006 ◽  
Vol 132 (3) ◽  
pp. 455-464 ◽  
Author(s):  
Akiko Hasegawa ◽  
Nozomi Kanazawa ◽  
Hideaki Sawai ◽  
Shinji Komori ◽  
Koji Koyama

The zona pellucida, an extracellular matrix surrounding mammalian oocytes, is composed of three or four glycoproteins. It is well known that the zona pellucida plays several critical roles during fertilization, but there is little knowledge about its formation. The purpose of this study is to examine whether a pig zona pellucida glycoprotein 2 (pZP2) would assemble with mouse zona pellucida. A transgene construct was prepared by placing a minigene encoding pZP2 downstream from the promoter of mouse ZP2. The result showed that the transgenic protein was synthesized in growing oocytes but not incorporated into the zona pellucida. Furthermore, the pZP2 transgene did not rescue the phenotype in ZP2-knockout zona-deficient mice. These results indicate that pZP2 does not participate in mouse zona pellucida formation and the zona pellucida is constituted from its component proteins in a molecular species-specific manner between mice and pigs.


2012 ◽  
Vol 1 ◽  
pp. e18 ◽  
Author(s):  
Melissa Bonner ◽  
Bryan Strouse ◽  
Mindy Applegate ◽  
Paula Livingston ◽  
Eric B Kmiec

2007 ◽  
Vol 97 (2) ◽  
pp. 321-328 ◽  
Author(s):  
S. Aisling Aherne ◽  
Joseph P. Kerry ◽  
Nora M. O'Brien

Experimental evidence suggests that most herbs and spices possess a wide range of biological and pharmacological activities that may protect tissues against O2-induced damage. The objectives of the present study were: first, to determine the effects of plant extracts on the viability, membrane integrity, antioxidant status and DNA integrity of Caco-2 cells and second, to investigate the cytoprotective and genoprotective effects of these plant extracts against oxidative stress in Caco-2 cells. The plant extracts examined were rosemary (Rosmarinus officinalis L.), oregano (Origanum vulgare L.), sage (Salvia officinalis L.) and echinacea (Echinacea purpurea L.). Cell membrane integrity was assessed by the lactate dehydrogenase release assay. Viability was determined by the neutral red uptake assay (NRUA) and the concentration of compound that resulted in 50 % cell death (IC50) was calculated. Antioxidant status of the cells was assessed by measuring GSH content, catalase activity and superoxide dismutase activity. To examine their cytoprotective and genoprotective effects, Caco-2 cells were pre-treated with each plant extract for 24 h followed by exposure to H2O2. DNA damage was assessed by the comet assay and cell injury was determined by the NRUA. Rosemary was the most toxic (IC50 123 μg/ml) and echinacea the least toxic (IC50 1421 μg/ml). Sage was the only plant extract to affect the antioxidant status of the cells by increasing GSH content. Sage, oregano and rosemary protected against H2O2-induced DNA damage (olive tail moment and percentage tail DNA), whereas protection against H2O2-induced cytotoxicity was afforded by sage only.


2021 ◽  
Vol 31 (02) ◽  
pp. 2150020
Author(s):  
Chunyan Gao ◽  
Fangqi Chen

This study develops a general model of delayed p53 regulatory network in the DNA damage response by introducing microRNA 192-mediated positive feedback loop based on the existing research work. Through theoretical analysis and numerical simulation, we find that the delay as a bifurcation parameter can drive the p53-Mdm2 module to undergo a supercritical Hopf bifurcation, thereby producing oscillation behavior. Moreover, we demonstrate how the positive feedback loop formed by p53* and microRNA 192 (miR-192) with the feature of double-negative regulation produces oscillations. Further, a comparison is given to demonstrate that microRNA 192-mediated positive feedback loop affects the robustness of system oscillations. In addition, we show that ataxia telangiectasia mutated kinase (ATM), once activated by DNA damage, makes p53* undergo two Hopf bifurcations. These results reveal that both time delay and miR-192 play tumor suppressing roles by promoting p53 oscillation or high level expression, which will provide a perspective for promoting the development of anti-cancer drugs by targeting miR-192 and time delay.


2021 ◽  
Author(s):  
Jason L. Pugh ◽  
Christopher P. Coplen ◽  
Alona S. Sukhina ◽  
Jennifer L. Uhrlaub ◽  
Jose Padilla-Torres ◽  
...  

ABSTRACTA popular “DNA-damage theory” of aging posits that unrepaired DNA damage leads to cellular (and organismal) senescence. Indeed, some hallmarks of immune aging are more prevalent in individuals exposed to Whole-Body Irradiation (WBI). To test this hypothesis in a model relevant to human immune aging, we examined separate and joint effects of lifelong latent Murine Cytomegalovirus (MCMV) and early-life WBI (i) over the course of the lifespan; (ii) in response to a West Nile virus (WNV) live attenuated vaccine; and (iii) following lethal WNV challenge subsequent to vaccination. We recently published that a single dose of non-lethal WBI in youth, on its own, was not sufficient to accelerate aging of the murine immune system despite causing widespread DNA damage and repopulation stress in hematopoietic cells. However, 4Gy sub-lethal WBI caused manifest reactivation of MCMV. Following vaccination and challenge with WNV in the old age, MCMV-infected animals experiencing 4Gy, but not lower, dose of sub-lethal WBI in youth had reduced survival. By contrast, old irradiated mice lacking MCMV and MCMV-infected, but not irradiated, mice were both protected to the same high level as the old non-irradiated, uninfected controls. Analysis of the quality and quantity of anti-WNV immunity showed that higher mortality in MCMV-positive WBI mice correlated with increased levels of MCMV-specific immune activation during WNV challenge. Moreover, we demonstrate that infection, including that by WNV, led to MCMV reactivation. Our data suggest that MCMV reactivation may be an important determinant of increased late-life mortality following early-life irradiation and late-life acute infection.


ZooKeys ◽  
2021 ◽  
Vol 1017 ◽  
pp. 111-126
Author(s):  
Adriana Vella ◽  
Noel Vella ◽  
Carolina Acosta-Díaz

The family Serranidae is represented by 92 genera and 579 valid species, with the genus Serranus Cuvier, 1816, containing 30 species. In this study, specimens of Butterfly-winged Comber, Serranus papilionaceus Valenciennes, 1832, were collected from the Canary Islands and compared morphologically and genetically to Painted Comber, Serranus scriba (Linnaeus, 1758), from the Mediterranean Sea. Morphological differences, especially in the colour banding pattern, were corroborated by genetic differences in mitochondrial (COI and ND2) and nuclear (Rhod and PTR) markers. The mitochondrial DNA markers revealed a high level of divergence and no shared haplotypes between the two species (interspecific divergence: COI 4.31%; ND2 8.68%), and a phylogenetic analysis showed that these two species are closely related sister species sharing common ancestry. This study is therefore offering to resurrect S. papilionaceus Valenciennes, 1832 as a valid species increasing the number of eastern Atlantic Serranus species to 11. This should direct new species-specific research, including its population conservation status assessment across its distribution.


Sign in / Sign up

Export Citation Format

Share Document