scholarly journals Shade suppresses wound-induced leaf repositioning through a mechanism involving PHYTOCHROME KINASE SUBSTRATE (PKS) genes

2021 ◽  
Author(s):  
Anne-Sophie Fiorucci ◽  
Olivier Michaud ◽  
Emanuel Schmid-Siegert ◽  
Martine Trevisan ◽  
Laure Allenbach Petrolati ◽  
...  

Shaded plants challenged with herbivores or pathogens prioritize growth over defense. However, most experiments have focused on the effect of shading light cues on defense responses. To investigate the potential interaction between shade-avoidance and wounding-induced Jasmonate (JA)-mediated signaling on leaf growth and movement, we used repetitive mechanical wounding of leaf blades to mimic herbivore attacks. Phenotyping experiments with combined treatments on Arabidopsis thaliana rosettes revealed that shade strongly inhibits the wound effect on leaf elevation. By contrast, petiole length is reduced by wounding both in the sun and in the shade. Thus, the relationship between the shade and wounding/JA pathways varies depending on the physiological response, implying that leaf growth and movement can be uncoupled. Using RNA-sequencing, we identified genes with expression patterns matching the hyponastic response (opposite regulation by both stimuli, interaction between treatments with shade dominating the wound signal). Among them were genes from the PKS (Phytochrome Kinase Substrate) family, which was previously studied for its role in phototropism and leaf positioning. Interestingly, we observed reduced shade suppression of the wounding effect in pks2pks4 double mutants while a PKS4 overexpressing line showed constitutively elevated leaves and was less sensitive to wounding. Our results indicate a trait-specific interrelationship between shade and wounding cues on Arabidopsis leaf growth and positioning. Moreover, we identify PKS genes as integrators of external cues in the control of leaf hyponasty further emphasizing the role of these genes in aerial organ positioning.

2018 ◽  
Author(s):  
Saeid Shahrabi ◽  
Ali Ehsanpour ◽  
Somayyeh Heidary ◽  
Mohammad Shahjahani ◽  
Masumeh Maleki Behzad

Myeloproliferative neoplasms (MPNs) are clonal stem cell disorders characterized by the presence of JAK2V617F mutation. Thrombohemorrhagic as well as autoimmune or inflammatory phenomena are common clinical outcomes of these disorders. Recent studies have shown that abnormality in frequency and function of blood cells manifested by an alteration in CD markers’ expression patterns play a key role in these complications. So, there may be a relationship between CD markers’ expressions and prognosis of JAK2V617F positive MPNs. Therefore, in this review, we have focused on these abnormalities from the perspective of changing expressions of CD markers and assessment of the relationship between these changes with prognosis of JAK2V617F positive MPNs. It can be stated that the abnormal expression of a large number of CD markers can be used as a prognostic biomarker for clinical outcomes including thrombohememorrhagic events, as well as autoimmune and leukemic transformation in JAK2V617F positive MPNs. Considering the possible role of CD markers’ expressions in JAK2V617F MPNs prognosis, further studies are needed to confirm the relationship between the expression of CD markers with prognosis to be able to find an appropriate therapeutic approach via targeting CD markers.


Rice ◽  
2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Wei Meng ◽  
Lijian Xu ◽  
Zhi-Yan Du ◽  
Fang Wang ◽  
Rui Zhang ◽  
...  

Abstract Backgrounds Acyl-coenzyme A (CoA) esters are important intermediates in lipid metabolism with regulatory properties. Acyl-CoA-binding proteins bind and transport acyl-CoAs to fulfill these functions. RICE ACYL-COA-BINDING PROTEIN6 (OsACBP6) is currently the only one peroxisome-localized plant ACBP that has been proposed to be involved in β-oxidation in transgenic Arabidopsis. The role of the peroxisomal ACBP (OsACBP6) in rice (Oryza sativa) was investigated. Results Here, we report on the function of OsACBP6 in rice. The osacbp6 mutant showed diminished growth with reduction in root meristem activity and leaf growth. Acyl-CoA profiling and lipidomic analysis revealed an increase in acyl-CoA content and a slight triacylglycerol accumulation caused by the loss of OsACBP6. Comparative transcriptomic analysis discerned the biological processes arising from the loss of OsACBP6. Reduced response to oxidative stress was represented by a decline in gene expression of a group of peroxidases and peroxidase activities. An elevation in hydrogen peroxide was observed in both roots and shoots/leaves of osacbp6. Taken together, loss of OsACBP6 not only resulted in a disruption of the acyl-CoA homeostasis but also peroxidase-dependent reactive oxygen species (ROS) homeostasis. In contrast, osacbp6-complemented transgenic rice displayed similar phenotype to the wild type rice, supporting a role for OsACBP6 in the maintenance of the acyl-CoA pool and ROS homeostasis. Furthermore, quantification of plant hormones supported the findings observed in the transcriptome and an increase in jasmonic acid level occurred in osacbp6. Conclusions In summary, OsACBP6 appears to be required for the efficient utilization of acyl-CoAs. Disruption of OsACBP6 compromises growth and led to provoked defense response, suggesting a correlation of enhanced acyl-CoAs content with defense responses.


Botany ◽  
2012 ◽  
Vol 90 (10) ◽  
pp. 990-1006 ◽  
Author(s):  
Dejana Jurišić-Knežev ◽  
Mária Čudejková ◽  
David Zalabák ◽  
Marta Hlobilová ◽  
Jakub Rolčík ◽  
...  

In maize, at least five auxin-binding proteins (ABPs) have been identified, yet their functions remain unclear. The present study reports the use of maize abp1, abp4, and abp1abp4 mutants to investigate the role of ABPs during maize growth and development. Single and double abp mutant plants grown in a greenhouse differ from the wild type (WT) in their leaf declination and leaf blade growth. The effect of the dark (D), blue light (BL), red light (RL), and exogenous auxin on the development of mutant seedlings was also studied. Relative to WT, etiolated mutant seedlings were shorter and showed a reduced responsiveness to exogenous auxin. In BL or RL, the responsiveness of maize seedlings to auxin was distinctly less than in D. The reducing effect of light on seedling responsiveness to auxin is mediated at least by phytochromes. The suppression of ABP1 and (or) ABP4 led to a distinct accumulation of free indole-3-acetic acid (IAA) in etiolated and light-grown seedling organs. We concluded that ABP1 and ABP4 participate in the growth of maize seedlings, mediate seedling responses to auxin, and interact with light signaling pathway(s). We also deduce a functional interaction between ABP1 and ABP4, which is that the relationship between them is light-, organ- and response-dependent.


Botany ◽  
2010 ◽  
Vol 88 (7) ◽  
pp. 668-674 ◽  
Author(s):  
Leonid V. Kurepin ◽  
Linda J. Walton ◽  
David M. Reid ◽  
C. C. Chinnappa

Plants growing in canopy shade typically exhibit increased stem elongation and reduced leaf growth. This is as a result of direct interactions between plant photoreceptors sensing the change (reduction) in the ratio of red to far-red (R/FR) light and photosynthetically active radiation (PAR) and plant hormones, and regulating these morphological traits. The effect of the varying light conditions found in shade on endogenous salicylic acid (SA) content was tested, and the possible role of SA in shade avoidance by sunflower ( Helianthus annuus L.) hypocotyls was examined. A logarithmic increase in PAR irradiance levels increased endogenous SA levels roughly 10-fold. Separation of individual light wavelengths (R, FR, and blue) constituting the PAR irradiance of sunlight, established that only FR light had significant and positive effects on endogenous SA levels. Further, a low R/FR ratio significantly increased the endogenous SA content in hypocotyls compared with normal and high R/FR ratios. Uncoupling the effect of R/FR ratio and PAR irradiance on endogenous SA content demonstrated that PAR irradiance is a much stronger signal than FR light-enrichment. Thus, while a low R/FR ratio increases the SA content in sunflower hypocotyls, low PAR, the other component of canopy shade, decreases the SA content much more effectively than low R/FR ratio increases it. Therefore, it appears that SA probably has no direct role in shade avoidance effects.


Sports ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 162
Author(s):  
Tommy Haugen ◽  
Jan F. Riesen ◽  
Ketil Østrem ◽  
Rune Høigaard ◽  
Martin K. Erikstad

Motivational climate and coach-behaviour seem important to understand sport involvement and participation. However, less is known about the potential interaction between these facets, and how it relates to athlete satisfaction. This study’s purpose is to examine the relationship between the perceived motivational climate, supportive coach-behaviour, and athletes’ personal treatment satisfaction among young soccer players. More specifically, we investigated the moderating effect of supportive coach-behaviour on the relationship between motivational climate and personal treatment satisfaction. Five hundred and thirty-two players (Mean age = 15.4 years, SD = 1.2) attending a Norwegian national soccer tournament participated in the study. Self-completion questionnaires were used to attain data. A linear regression analysis revealed that mastery of climate and supportive coach-behaviour were positively associated with personal treatment satisfaction. A negative association was found between performance climate and personal treatment satisfaction. Further, moderation analyses revealed that supportive coach-behaviour moderated the relationship between performance climate and personal treatment satisfaction. The findings indicate that a performance climate may not be as maladaptive when coaches provide supportive behaviour. The findings highlight the value of a further examination of the interaction between motivational climate and coaching behaviours, and its potential relations to young athlete’s sport experience.


2019 ◽  
Vol 20 (10) ◽  
pp. 2525 ◽  
Author(s):  
Laura Bertini ◽  
Luana Palazzi ◽  
Silvia Proietti ◽  
Susanna Pollastri ◽  
Giorgio Arrigoni ◽  
...  

The role of jasmonates in defense priming has been widely recognized. Priming is a physiological process by which a plant exposed to low doses of biotic or abiotic elicitors activates faster and/or stronger defense responses when subsequently challenged by a stress. In this work, we investigated the impact of MeJA-induced defense responses to mechanical wounding in rice (Oryza sativa). The proteome reprogramming of plants treated with MeJA, wounding or MeJA+wounding has been in-depth analyzed by using a combination of high throughput profiling techniques and bioinformatics tools. Gene Ontology analysis identified protein classes as defense/immunity proteins, hydrolases and oxidoreductases differentially enriched by the three treatments, although with different amplitude. Remarkably, proteins involved in photosynthesis or oxidative stress were significantly affected upon wounding in MeJA-primed plants. Although these identified proteins had been previously shown to play a role in defense responses, our study revealed that they are specifically associated with MeJA-priming. Additionally, we also showed that at the phenotypic level MeJA protects plants from oxidative stress and photosynthetic damage induced by wounding. Taken together, our results add novel insight into the molecular actors and physiological mechanisms orchestrated by MeJA in enhancing rice plants defenses after wounding.


2020 ◽  
Vol 10 (5) ◽  
pp. 1797-1807
Author(s):  
Chunmei Li ◽  
Kazunari Nozue ◽  
Julin N. Maloof

Plants have a variety of strategies to avoid canopy shade and compete with their neighbors for light, collectively called the shade avoidance syndrome (SAS). Plants also have extensive systems to defend themselves against pathogens and herbivores. Defense and shade avoidance are two fundamental components of plant survival and productivity, and there are often tradeoffs between growth and defense. Recently, MYC2, a major positive regulator of defense, was reported to inhibit elongation during shade avoidance. Here, we further investigate the role of MYC2 and the related MYC3 and MYC4 in shade avoidance, and we examine the relationship between MYC2/3/4 and the PIF family of light-regulated transcription factors. We demonstrate that MYC2/3/4 inhibit both elongation and flowering. Furthermore, using both genetic and transcriptomic analysis we find that MYCs and PIFs generally function independently in growth regulation. However, surprisingly, the pif4/5/7 triple mutant restored the petiole shade avoidance response of myc2 (jin1-2) and myc2/3/4. We theorize that increased petiole elongation in myc2/3/4 could be more due to resource tradeoffs or post-translational modifications rather than interactions with PIF4/5/7 affecting gene regulation.


PPAR Research ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-19 ◽  
Author(s):  
Runzhi Huang ◽  
Jiaqi Zhang ◽  
Mingxiao Li ◽  
Penghui Yan ◽  
Huabin Yin ◽  
...  

Peroxisome proliferator-activated receptors (PPARs) are members of nuclear transcription factors. The functions of the PPAR family (PPARA, PPARD, and PPARG) and their coactivators (PPARGC1A and PPARGC1B) in maintenance of lipid and glucose homeostasis have been unveiled. However, the roles of PPARs in cancer development remain elusive. In this work, we made use of 11,057 samples across 33 TCGA tumor types to analyze the relationship between PPAR transcriptional expression and tumorigenesis as well as drug sensitivity. We performed multidimensional analyses on PPARA, PPARG, PPARD, PPARGC1A, and PPARGC1B, including differential expression analysis in pan-cancer, immune subtype analysis, clinical analysis, tumor purity analysis, stemness correlation analysis, and drug responses. PPARs and their coactivators expressed differently in different types of cancers, in different immune subtypes. This analysis reveals various expression patterns of the PPAR family at a level of pan-cancer and provides new clues for the therapeutic strategies of cancer.


2020 ◽  
Vol 21 (21) ◽  
pp. 8316
Author(s):  
Xin Zhang ◽  
Wei Ran ◽  
Jin Zhang ◽  
Meng Ye ◽  
Songbo Lin ◽  
...  

The TIFY family is a plant-specific gene family that is involved in regulating a variety of plant processes, including developmental and defense responses. The chromosome-level genome of the tea plant (Camellia sinensis) has recently been released, but a comprehensive view of the TIFY family in C. sinensis (the CsTIFY genes) is lacking. The current study performed an extensive genome-wide identification of CsTIFY genes. The phylogenetics, chromosome location, exon/intron structure, and conserved domains of these genes were analyzed to characterize the members of the CsTIFY family. The expression profiles of the CsTIFY genes in four organs were analyzed, and they showed different spatial expression patterns. All CsJAZ genes were observed to be induced by jasmonate acid (JA) and exhibited different responses to abiotic and biotic stresses. Six of seven CsJAZ genes (CsJAZ1, CsJAZ2, CsJAZ3, CsJAZ4, CsJAZ7, and CsJAZ8) were upregulated by mechanical wounding and infestation with the tea geometrid (Ectropis obliqua), while infection with tea anthracnose (Colletotrichum camelliae) primarily upregulated the expression levels of CsJAZ1 and CsJAZ10. In addition, CsJAZs were observed to interact with CsMYC2 and AtMYC2. Therefore, the results of this study may contribute to the functional characterization of the CsTIFY genes, especially the members of the JAZ subfamily, as regulators of the JA-mediated defense response in tea plant.


2018 ◽  
Vol 285 (1893) ◽  
pp. 20182014 ◽  
Author(s):  
Chad M. Eliason ◽  
Julia A. Clarke

Metabolism links organisms to their environment through its effects on thermoregulation, feeding behaviour and energetics. Genes involved in metabolic processes have known pleiotropic effects on some melanic colour traits. Understanding links between physiology and melanic colour is critical for understanding the role of, and potential constraints on, colour production. Despite considerable variation in metabolic rates and presumed ancestral melanic coloration in vertebrates, few studies have looked at a potential relationship between these two systems in a comparative framework. Here, we test the hypothesis that changes in melanosome shape in integumentary structures track metabolic rate variation across amniotes. Using multivariate comparative analyses and incorporating both extant and fossil taxa, we find significantly faster rates of melanosome shape evolution in taxa with high metabolic rates, as well as both colour- and clade-specific differences in the relationship between metabolic rate and melanosome shape. Phylogenetic tests recover an expansion in melanosome morphospace in maniraptoran dinosaurs, as well as rate shifts within birds (in songbirds) and mammals. These findings indicate another core phenotype influenced by metabolic changes in vertebrates. They also provide a framework for testing clade-specific gene expression patterns in the melanocortin system and may improve colour reconstructions in extinct taxa.


Sign in / Sign up

Export Citation Format

Share Document