scholarly journals Highly efficient Runx1 enhancer eR1-mediated genetic engineering for fetal, child and adult hematopoietic stem cells

2021 ◽  
Author(s):  
Cai Ping Koh ◽  
Avinash Govind Bahirvani ◽  
Chelsia Qiuxia Wang ◽  
Tomomasa Yokomizo ◽  
Cherry Ee Lin Ng ◽  
...  

A cis-regulatory genetic element which targets gene expression to stem cells, termed stem cell enhancer, serves as a molecular handle for stem cell-specific genetic engineering. Here we show the generation and characterization of a tamoxifen-inducible CreERT2 transgenic (Tg) mouse employing previously identified hematopoietic stem cell (HSC) enhancer for Runx1, eR1 (+24m). Kinetic analysis of labeled cells after tamoxifen injection and transplantation assays revealed that eR1-driven CreERT2 activity marks dormant adult HSCs which slowly but steadily contribute to unperturbed hematopoiesis. Fetal and child HSCs which are uniformly or intermediately active were also efficiently targeted. Notably, a gene ablation at distinct developmental stages, enabled by this system, resulted in different phenotypes. Similarly, an oncogenic Kras induction at distinct ages caused different spectrums of malignant diseases. These results demonstrate that the eR1-CreERT2 Tg mouse serves as a powerful resource for the analyses of both normal and malignant HSCs at all developmental stages.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Lars Velten ◽  
Benjamin A. Story ◽  
Pablo Hernández-Malmierca ◽  
Simon Raffel ◽  
Daniel R. Leonce ◽  
...  

AbstractCancer stem cells drive disease progression and relapse in many types of cancer. Despite this, a thorough characterization of these cells remains elusive and with it the ability to eradicate cancer at its source. In acute myeloid leukemia (AML), leukemic stem cells (LSCs) underlie mortality but are difficult to isolate due to their low abundance and high similarity to healthy hematopoietic stem cells (HSCs). Here, we demonstrate that LSCs, HSCs, and pre-leukemic stem cells can be identified and molecularly profiled by combining single-cell transcriptomics with lineage tracing using both nuclear and mitochondrial somatic variants. While mutational status discriminates between healthy and cancerous cells, gene expression distinguishes stem cells and progenitor cell populations. Our approach enables the identification of LSC-specific gene expression programs and the characterization of differentiation blocks induced by leukemic mutations. Taken together, we demonstrate the power of single-cell multi-omic approaches in characterizing cancer stem cells.


Blood ◽  
2000 ◽  
Vol 95 (9) ◽  
pp. 2813-2820 ◽  
Author(s):  
Lisa Gallacher ◽  
Barbara Murdoch ◽  
Dongmei M. Wu ◽  
Francis N. Karanu ◽  
Mike Keeney ◽  
...  

Recent evidence indicates that human hematopoietic stem cell properties can be found among cells lacking CD34 and lineage commitment markers (CD34−Lin−). A major barrier in the further characterization of human CD34− stem cells is the inability to detect this population using in vitro assays because these cells only demonstrate hematopoietic activity in vivo. Using cell surface markers AC133 and CD7, subfractions were isolated within CD34−CD38−Lin− and CD34+CD38−Lin− cells derived from human cord blood. Although the majority of CD34−CD38−Lin− cells lack AC133 and express CD7, an extremely rare population of AC133+CD7− cells was identified at a frequency of 0.2%. Surprisingly, these AC133+CD7− cells were highly enriched for progenitor activity at a frequency equivalent to purified fractions of CD34+ stem cells, and they were the only subset among the CD34−CD38−Lin− population capable of giving rise to CD34+ cells in defined liquid cultures. Human cells were detected in the bone marrow of non-obese/severe combined immunodeficiency (NOD/SCID) mice 8 weeks after transplantation of ex vivo–cultured AC133+CD7− cells isolated from the CD34−CD38−Lin− population, whereas 400-fold greater numbers of the AC133−CD7− subset had no engraftment ability. These studies provide novel insights into the hierarchical relationship of the human stem cell compartment by identifying a rare population of primitive human CD34− cells that are detectable after transplantation in vivo, enriched for in vitro clonogenic capacity, and capable of differentiation into CD34+ cells.


Blood ◽  
1995 ◽  
Vol 86 (1) ◽  
pp. 60-65 ◽  
Author(s):  
JT Holden ◽  
RB Geller ◽  
DC Farhi ◽  
HK Holland ◽  
LL Stempora ◽  
...  

Thy-1 (CDw90) is a phosphatidylinositol-anchored cell surface molecule which, when coexpressed with CD34 in normal human bone marrow, identifies a population of immature cells that includes putative hematopoietic stem cells. To date, the characterization of Thy-1 expression has been confined largely to normal tissues and cell lines. In this study, we evaluated the frequency and intensity of Thy-1 expression as defined by reactivity with the anti-Thy-1 antibody 5E10 in 38 cases of CD34+ acute leukemia (21 acute myelogenous leukemia [AML], 8 chronic myelogenous leukemia [CML] in blast crisis, and 9 acute lymphoblastic leukemia [ALL]). In 34 of 38 cases (89%) the CD34+ cells lacked expression of the Thy-1 antigen. High-density Thy-1 expression was found in 1 case of CML in lymphoid blast crisis, and low- density Thy-1 expression was identified on a portion of the leukemic cells in 2 cases of AML with myelodysplastic features, and 1 case of CML in myeloid blast crisis, suggesting a possible correlation between Thy-1 expression and certain instances of stem cell disorders such as CML and AML with dysplastic features. In contrast, the dissociation of Thy-1 and CD34 expression in the majority of acute leukemias studied suggests that the development of these leukemias occurs at a later stage than the hematopoietic stem cell. Characterization of Thy-1 expression in acute leukemia may eventually provide insights into the origin of the disease. In addition, separation of leukemic blasts from normal stem cells based on Thy-1 expression may prove useful in assessing residual disease, as well as in excluding leukemic blasts from stem cell preparations destined for autologous bone marrow or peripheral stem cell transplantation.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1380-1380
Author(s):  
Marc H.G.P. Raaijmakers ◽  
Elke P.L.M. de Grouw ◽  
Louis T.F. van de Locht ◽  
Bert A. van der Reijden ◽  
Theo J.M. de Witte ◽  
...  

Abstract In most cases of acute myeloid leukemia (AML) CD34+CD38− cells are considered to be stem cells, responsible for the maintenance and relapse of AML. ATP binding cassette transporters function in the extrusion of xenobiotics and chemotherapeutical compounds, and may be involved in therapy resistance. Elucidation of mechanisms conferring drug resistance to CD34+CD38− cells is essential to provide novel targets for stem cell eradication in AML. We studied gene expression of all 45 transmembrane ABC transporters (the complete ABCA, B, C, D and G family) in human hematopoietic CD34+CD38− cells and more committed CD34+CD38+ progenitor cells, from healthy donors and patients with non-hematological diseases (N=11) and AML patients (N=11). Gene expression was assessed using a novel real-time RT-PCR approach with micro fluidic cards. In normal CD34+CD38− cells 36 ABC transporters were expressed, 22 of these displayed significant higher expression in the CD34+CD38− cell fraction compared to the CD34+CD38+ cell fraction. In addition to the known stem cell transporters (ABCB1, ABCC1 and ABCG2) these differential expressed genes included many members not previously associated with stem cell biology. In AML the ABC transporter expression profile was largely conserved, including expression of all 13 known drug transporters. These data suggest an important role for many ABC transporters in hematopoietic stem cell biology. In addition, the preferential expression of a high number of drug transport related transporters predicts that broad spectrum inhibition of ABC transporters is likely to be required for CD34+38− stem cell eradication in AML. This approach will, apart from affecting the leukemic stem cells, equally affect the normal stem cells.


2012 ◽  
Vol 02 (01) ◽  
pp. 5-14 ◽  
Author(s):  
Sonal R. Tuljapurkar ◽  
John D. Jackson ◽  
Susan K. Brusnahan ◽  
Barbara J. O’Kane ◽  
John G. Sharp

Blood ◽  
2000 ◽  
Vol 96 (3) ◽  
pp. 894-901 ◽  
Author(s):  
Christopher A. Klug ◽  
Samuel Cheshier ◽  
Irving L. Weissman

Abstract Hematopoietic stem cell gene therapy holds promise for the treatment of many hematologic disorders. One major variable that has limited the overall success of gene therapy to date is the lack of sustained gene expression from viral vectors in transduced stem cell populations. To understand the basis for reduced gene expression at a single-cell level, we have used a murine retroviral vector, MFG, that expresses the green fluorescent protein (GFP) to transduce purified populations of long-term self-renewing hematopoietic stem cells (LT-HSC) isolated using the fluorescence-activated cell sorter. Limiting dilution reconstitution of lethally irradiated recipient mice with 100% transduced, GFP+ LT-HSC showed that silencing of gene expression occurred rapidly in most integration events at the LT-HSC level, irrespective of the initial levels of GFP expression. When inactivation occurred at the LT-HSC level, there was no GFP expression in any hematopoietic lineage clonally derived from silenced LT-HSC. Inactivation downstream of LT-HSC that stably expressed GFPin long-term reconstituted animals was restricted primarily to lymphoid cells. These observations suggest at least 2 distinct mechanisms of silencing retrovirally expressed genes in hematopoietic cells.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2821-2821
Author(s):  
Hisayuki Yokoyama ◽  
Hideo Harigae ◽  
Shinichiro Takahashi ◽  
Yoko Okitsu ◽  
Johji Yamamoto ◽  
...  

Abstract Aplastic anemia (AA) is characterized by reduced hematopoiesis resulting in pancytopenia. It is suggested that a certain immunological attack to hematopoietic stem cells play an important role in developing AA. However, limited information is available for the intrinsic characteristics of stem cells in AA. Previous work in our laboratory showed decreased expression of GATA-2 gene in CD34 positive cells in AA, suggesting that there is an aberrant expression of stem cell-specific genes in stem cells in AA. Recently it is emerged that some genes such as HOXB4 and BMI-1, function for the proliferation and maintenance of stem cells. In this study, we examined expression levels of HOXB4 and BMI-1 in CD34 positive cells by quantitative PCR in 10 patients with AA and 13 with idiopathic thrombocytopenic purpura (ITP). Between these two factors, the expression level of HOXB4 was markedly decreased in AA compared with in ITP, whereas that of BMI-1 was not. Moreover, the expression level of GATA-2 in these populations was significantly correlated to HOXB4 gene expression (Spearman’s rank correlation, r=0.6573 p<0.01) compared to that of BMI-1(r=0.4107, p>0.05). As they functions as a transcription factor, these results raise the possibility that GATA-2 and HOXB4 regulate each other. To explore this possibility, first, we cloned HOXB4 5′flanking region by PCR and performed promoter analysis. Since the previous report showed that the region from −164 to −116 was important for promoter activity of HOXB4 gene, we focused on a GATA element located at −160. When this element was deleted, the reporter activity was decreased to 60% of wild-type in K562 cells. Furthermore, co-transfection of GATA-2 expression vector significantly activates the reporter gene in a dose dependent manner. EMSA revealed that GATA-2 binds specifically to this element. On the other hand, the active region both of exon 1S and 1G promoter of GATA-2 gene, which was identified by the promoter analysis, did not contain the consensus sequence recognized by HOXB4. These findings suggest that in stem cells in AA, the decreased expression of GATA-2 gene lead to the reduced HOXB4 gene expression, which may responsible for the development of the disease.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 466-466 ◽  
Author(s):  
Eric R. Lechman ◽  
Kristin J. Hope ◽  
Fernando J. Suarez Saiz ◽  
Katsuto Takenaka ◽  
Carlo M. Croce ◽  
...  

Abstract MicroRNAs (miRNAs) are a new class of non-coding small RNAs that negatively regulate the expression of protein-encoding genes. Mature miRNAs are excised sequentially from primary miRNA (pri-miRNA) foldback precursor transcripts, and regulate gene expression at the post-transcriptional level. miRNAs functionally suppress gene expression by either inhibition of protein synthesis or by direct cleavage of the target mRNA. miRNA expression is tissue and developmental stage restricted, suggesting important roles in tissue specification and/or cell lineage determination. miRNAs are implicated in the regulation of diverse processes including cell growth control, apoptosis, fat metabolism and insulin secretion, and may be involved in the maintenance of the embryonic stem cell state. Several recent lines of evidence suggest a role for miRNAs in hematological malignancies. Many characterized miRNAs are located at fragile sites, minimal loss of heterozygosity regions, minimal regions of amplification or common breakpoint regions in human cancers. For example, chromosomal translocation t(8;17) in an aggressive B-cell leukemia results in fusion of miR-142 precursor and a truncated MYC gene. Furthermore, both miR-15 and miR-16 are located within a 30 kb deletion in CLL, and in most cases of this cancer both genes are deleted or underexpressed. In addition, mice transplanted with hematopoietic stem cells (HSC) overexpressing both c-Myc and the miR-17–92 polycistron developed cancers earlier with a more aggressive nature when compared to lymphomas generated by c-myc alone. To address the role of miRNAs in the regulation and maintenance of the hematopoietic stem cell state and leukemogenesis, we sorted 6 primary AML patient samples into 4 populations based on the expression of CD34/CD38 and performed miRNA array analysis. We identified a subset of miRNAs whose expression profile could discriminate the CD34+/CD38- fractions from more mature populations. In particular, BIC/miR-155 was found to be over-expressed in leukemic stem cells (LSC). Validation by qRT-PCR revealed this expression pattern in 5 of the 6 sorted AML samples. Furthermore, within umbilical cord blood (CB) cells, BIC/miR-155 is more highly expressed in the primitive CD34+38- fraction as compared to mature sub-fractions as assessed by Affymetrix microarray. miRNA array analysis also revealed elevated levels of miR-155 in bulk primary AMLs as compared to normal BM. Intriguingly, BIC/miR-155 was first identified as a common retroviral insertion site in avian leucosis virus induced B cell lymphomas, and BIC/miR-155 overexpression has been observed in all subtypes of Hodgkin’s lymphoma. To test the hypothesis that miR-155 is important in LSC/HSC function, we designed lentiviral vectors for RNAi mediated knockdown of BIC/miR-155. Knockdown of BIC/miR-155 within a novel CD34+ leukemic cell line resulted in a loss of CD34 expression and reduced proliferative potential. Additionally, knockdown within CB led to alterations in colony forming capacity. Additionally, we have recently generated lentiviral vectors for the enforced overexpression of BIC/miR-155. In vivo studies to investigate the effects of BIC/miR-155 over-expression and knockdown are ongoing and will be discussed.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4199-4199 ◽  
Author(s):  
Carolina L. Bigarella ◽  
Pauline Rimmele ◽  
Rebeca Dieguez-Gonzalez ◽  
Raymond Liang ◽  
Brigitte Izac ◽  
...  

Abstract Leukemic stem cells (LSCs) share many of the same properties of normal hematopoietic stem cells (HSCs) including their highly quiescent state, capacity to self-renew, low levels of reactive oxygen species (ROS) and enhanced DNA repair program. These properties make the efficient and specific eradication of these cells challenging. Foxo3 and p53 are two transcription factors essential for the modulation of HSC quiescence and self-renewal. While Foxo3 is inhibited by signaling from several oncoproteins but crucial for the maintenance of the LSCs in both chronic and acute myeloid leukemia (CML and AML respectively), mutations of p53 although rare, are associated with poor prognosis in advanced stages of these diseases. In vivo ROS-mediated activation of p53 is known to lead to loss of quiescence, alterations of cell cycle and exhaustion of the Foxo3-/- HSC pool. Seeking to understand the contribution of p53 to Foxo3-/- HSC cycling defects, we crossed p53+/- and Foxo3+/- mice. To our surprise we found the bone marrow (BM) frequency of both p53+/-Foxo3-/- and p53-/-Foxo3-/- LSK (Lin-Sca1+cKit+) and long-term-HSC (LT-HSC, LSK Flk2-CD34-) populations greatly increased as compared to their Foxo3-/- counterparts (n=5 mice per genotype; p<0.05). Using Ki67 and DAPI staining we found that loss of one or both alleles of p53 gradually rescued the cell cycle defect of Foxo3-/- HSC and increased the frequency of LSK cells in Go by 2-fold. Loss of p53 also rescued the impaired capacity of Foxo3-/- LSK cells to competitively repopulate multilineage blood over 16 weeks, as shown by the higher frequency of p53+/-Foxo3-/- and p53-/-Foxo3-/- donor-derived cells in the peripheral blood of recipient animals (∼47% recipients of double-mutant cells versus 20% in Foxo3-/- recipients, n=5 per group). Furthermore, loss of p53 significantly improved the compromised self-renewal of Foxo3 mutant HSC in serial BM transplantations. In our quest to identify mechanisms whereby p53 depletion improves Foxo3-/- HSC function, we noticed that the DNA damage accumulated in Foxo3-/- HSC at the steady-state was remarkably ameliorated by removal of one or both alleles of p53 from Foxo3-/- HSCs, as measured by flow cytometry levels of phospho-H2AX (gamma-H2AX) and DNA breaks by comet assay (n=3, p<0.05). Unexpectedly, ROS levels were also significantly reduced by 30% in p53+/-Foxo3-/- in comparison to Foxo3-/- LSK cells, while ROS levels in p53+/- LSK cells were similar to that in WT cells. Consistent with these results, the expression of several anti-oxidant enzymes including Sod1, Sod2, Catalase, Gpx1, Sesn1 and Sesn2 (n≥2), was highly upregulated while a number of genes implicated in mitochondrial generation of ROS were significantly deregulated as a result of loss of one or both alleles of p53. These combined findings suggest that a switch from anti-oxidant to pro-oxidant activity of p53 contributes to Foxo3-/- HSC defects. Despite their apparent normal stem cell function, p53+/-Foxo3-/- HSC were highly altered in their gene expression profile. Interestingly, Gene Set Enrichment Analysis (GSEA) of the microarray analysis (Illumina bead chip mouse-Ref8) of WT, p53+/-, Foxo3-/-, and p53+/-Foxo3-/- LSK cells showed that a cluster of genes associated with fatty acid metabolism was highly enriched in p53+/-Foxo3-/- HSCs (ES=0.746; p<0.01). In addition, from 3976 genes exclusively deregulated in p53+/-Foxo3-/- LSK cells, 201 (out of 1051) overlapped with genes downregulated, while 9 (out of 14) overlapped with genes exclusively upregulated in a LSC-gene signature. To evaluate whether this pre-leukemic profile was associated with increased susceptibility to malignancy, we compared the potential and timeline of BCR-ABL-transformed p53+/-Foxo3-/- HSC as compared to controls in establishing CML in mice. We found a shorter time to the onset of the disease and decreased survival of the recipients of p53+/-Foxo3-/- transformed HSCs (n=4 per group, p<0.05) as compared to WT and Foxo3-/- controls. We propose that the p53+/-Foxo3-/- double-mutant HSCs are enriched for preleukemic stem cells based on their quiescence and self-renewal capacity, low ROS, robust DNA repair, susceptibility to transformation and aberrant gene expression profile. These findings raise the possibility that the coordinated Foxo3 and p53 regulation of ROS wires together the stem cell program. Disclosures: No relevant conflicts of interest to declare.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Martin Sebastian Staege

Gene Expression Music Algorithm (GEMusicA) is a method for the transformation of DNA microarray data into melodies that can be used for the characterization of differentially expressed genes. Using this method we compared gene expression profiles from endothelial cells (EC), hematopoietic stem cells, neuronal stem cells, embryonic stem cells (ESC), and mesenchymal stem cells (MSC) and defined a set of genes that can discriminate between the different stem cell types. We analyzed the behavior of public microarray data sets from Ewing sarcoma (“Ewing family tumors,” EFT) cell lines and biopsies in GEMusicA after prefiltering DNA microarray data for the probe sets from the stem cell signature. Our results demonstrate that individual Ewing sarcoma cell lines have a high similarity to ESC or EC. Ewing sarcoma cell lines with inhibited Ewing sarcoma breakpoint region 1-Friend leukemia virus integration 1 (EWSR1-FLI1) oncogene retained the similarity to ESC and EC. However, correlation coefficients between GEMusicA-processed expression data between EFT and ESC decreased whereas correlation coefficients between EFT and EC as well as between EFT and MSC increased after knockdown of EWSR1-FLI1. Our data support the concept of EFT being derived from cells with features of embryonic and endothelial cells.


Sign in / Sign up

Export Citation Format

Share Document