scholarly journals Host Phylogeny Determines the Gut Microbial Landscape of Cephalopods

Author(s):  
Woorim Kang ◽  
Pil Soo Kim ◽  
Euon Jung Tak ◽  
Hojun Sung ◽  
Na-Ri Shin ◽  
...  

Abstract Background: Compared to vertebrate gut microbiomes, little is known about the factors shaping the gut microbiomes in invertebrates, especially in non-insect invertebrates. Class Cephalopoda is the only group in the phylum Mollusca characterized by a closed circulatory system and a well-differentiated digestive system to process their carnivorous diet. Despite their key phylogenetic position for comparative studies as well as their ecological and commercial importances, analyses of the cephalopod gut microbiome are limited. In this study, we characterized the gut microbiota of six species of wild cephalopods by Illumina MiSeq sequencing of 16S rRNA gene amplicons.Results: Each cephalopod gut consisted of a distinct consortium of microbes. Photobacterium and Mycoplasma were prevalent in all cephalopod hosts and were identified as core taxa. The gut microbial composition reflected host phylogeny. The importance of host phylogeny was supported by a detailed oligotype-level analysis of operational taxonomic units assigned to Photobacterium and Mycoplasma, although Photobacterium typically inhabited multiple hosts, whereas Mycoplasma tended to show host-specific colonization. Further, we showed that class Cephalopoda has a distinct gut microbial community from those of other molluscan groups. The gut microbiota of the phylum Mollusca was determined by host phylogeny, diet, and environment (aquatic vs. terrestrial).Conclusion: We provide the first comparative analysis of cephalopod and mollusk gut microbial communities. The gut microbial community of cephalopods is composed of the distinctive microbes and strongly associated with their phylogeny. The genera Photobacterium and Mycoplasma are core taxa in the cephalopod gut microbiota. Collectively, our findings of this study provide evidence that cephalopod and mollusk gut microbiomes reflect phylogeny, environment, and the diet of the host and these data can be suggested to establish future directions for invertebrate gut microbiome research.

2021 ◽  
Author(s):  
Woorim Kang ◽  
Pil Soo Kim ◽  
Euon Jung Tak ◽  
Hojun Sung ◽  
Na-Ri Shin ◽  
...  

Abstract BackgroundCompared to vertebrate gut microbiomes, little is known about the factors shaping the gut microbiomes in invertebrates, especially in non-insect invertebrates. Class Cephalopoda is the only group in the phylum Mollusca characterized by a closed circulatory system and a well-differentiated digestive system to process their carnivorous diet. Despite their key phylogenetic position for comparative studies as well as their ecological and commercial importances, analyses of the cephalopod gut microbiome are limited. In this study, we characterized the gut microbiota of six species of wild cephalopods by Illumina MiSeq sequencing of 16S rRNA gene amplicons.ResultsEach cephalopod gut consisted of a distinct consortium of microbes. Photobacterium and Mycoplasma were prevalent in all cephalopod hosts and were identified as core taxa. The gut microbial composition reflected host phylogeny. The importance of host phylogeny was supported by a detailed oligotype-level analysis of operational taxonomic units assigned to Photobacterium and Mycoplasma, although Photobacterium typically inhabited multiple hosts, whereas Mycoplasma tended to show host-specific colonization. Further, we showed that class Cephalopoda has a distinct gut microbial community from those of other molluscan groups. The gut microbiota of the phylum Mollusca was determined by host phylogeny, diet, and environment (aquatic vs. terrestrial).ConclusionWe provide the first comparative analysis of cephalopod and mollusk gut microbial communities. The gut microbial community of cephalopods is composed of the distinctive microbes and strongly associated with their phylogeny. The genera Photobacterium and Mycoplasma are core taxa in the cephalopod gut microbiota. Collectively, our findings of this study provide evidence that cephalopod and mollusk gut microbiomes reflect phylogeny, environment, and the diet of the host and these data can be suggested to establish future directions for invertebrate gut microbiome research.


2021 ◽  
Vol 11 (4) ◽  
pp. 294
Author(s):  
Irina Grigor’eva ◽  
Tatiana Romanova ◽  
Natalia Naumova ◽  
Tatiana Alikina ◽  
Alexey Kuznetsov ◽  
...  

The last decade saw extensive studies of the human gut microbiome and its relationship to specific diseases, including gallstone disease (GSD). The information about the gut microbiome in GSD-afflicted Russian patients is scarce, despite the increasing GSD incidence worldwide. Although the gut microbiota was described in some GSD cohorts, little is known regarding the gut microbiome before and after cholecystectomy (CCE). By using Illumina MiSeq sequencing of 16S rRNA gene amplicons, we inventoried the fecal bacteriobiome composition and structure in GSD-afflicted females, seeking to reveal associations with age, BMI and some blood biochemistry. Overall, 11 bacterial phyla were identified, containing 916 operational taxonomic units (OTUs). The fecal bacteriobiome was dominated by Firmicutes (66% relative abundance), followed by Bacteroidetes (19%), Actinobacteria (8%) and Proteobacteria (4%) phyla. Most (97%) of the OTUs were minor or rare species with ≤1% relative abundance. Prevotella and Enterocossus were linked to blood bilirubin. Some taxa had differential pre- and post-CCE abundance, despite the very short time (1–3 days) elapsed after CCE. The detailed description of the bacteriobiome in pre-CCE female patients suggests bacterial foci for further research to elucidate the gut microbiota and GSD relationship and has potentially important biological and medical implications regarding gut bacteria involvement in the increased GSD incidence rate in females.


2021 ◽  
Author(s):  
Artur Trzebny ◽  
Anna Slodkowicz-Kowalska ◽  
Johanna Björkroth ◽  
Miroslawa Dabert

AbstractThe animal gut microbiota consist of many different microorganisms, mainly bacteria, but archaea, fungi, protozoans, and viruses may also be present. This complex and dynamic community of microorganisms may change during parasitic infection. In the present study, we investigated the effect of the presence of microsporidians on the composition of the mosquito gut microbiota and linked some microbiome taxa and functionalities to infections caused by these parasites. We characterised bacterial communities of 188 mosquito females, of which 108 were positive for microsporidian DNA. To assess how bacterial communities change during microsporidian infection, microbiome structures were identified using 16S rRNA microbial profiling. In total, we identified 46 families and four higher taxa, of which Comamonadaceae, Enterobacteriaceae, Flavobacteriaceae and Pseudomonadaceae were the most abundant mosquito-associated bacterial families. Our data suggest that the mosquito gut microbial composition varies among host species. In addition, we found a correlation between the microbiome composition and the presence of microsporidians. The prediction of metagenome functional content from the 16S rRNA gene sequencing suggests that microsporidian infection is characterised by some bacterial species capable of specific metabolic functions, especially the biosynthesis of ansamycins and vancomycin antibiotics and the pentose phosphate pathway. Moreover, we detected a positive correlation between the presence of microsporidian DNA and bacteria belonging to Spiroplasmataceae and Leuconostocaceae, each represented by a single species, Spiroplasma sp. PL03 and Weissella cf. viridescens, respectively. Additionally, W. cf. viridescens was observed only in microsporidian-infected mosquitoes. More extensive research, including intensive and varied host sampling, as well as determination of metabolic activities based on quantitative methods, should be carried out to confirm our results.


2020 ◽  
Author(s):  
Daniela Gaio ◽  
Matthew Z DeMaere ◽  
Kay Anantanawat ◽  
Graeme J Eamens ◽  
Michael Liu ◽  
...  

Abstract BackgroundEarly weaning and intensive farming practices predispose piglets to the development of infectious and often lethal diseases, against which antibiotics are used. Besides contributing to the build-up of antimicrobial resistance, antibiotics are known to modulate the gut microbial composition. Studies have previously investigated the effects of probiotics as alternatives to antibiotic treatment for the prevention of post-weaning diarrhea. In order to describe the post-weaning gut microbiota, and the effects of two probiotics formulations and of intramuscular antibiotic treatment on the gut microbiota, we processed over 800 faecal time-series samples from 126 piglets and 42 sows, generating over 8Tbp of metagenomic shotgun sequence data. Here we describe the animal trial procedures, the generation of our metagenomic dataset and the analysis of the microbial community composition using a phylogenetic framework.ResultsFactors such as age, litter effects, and breed, by significantly correlating with gut microbial community shifts, can be major confounding factors in the assessment of treatment effects. Intramuscular antibiotic treatment and probiotic treatments were found to correlate with alpha and beta diversity, as well as with a transient establishment of Mollicutes and Lactobacillales, respectively. We found the abundance of certain taxa to correlate with weight gain.ConclusionsOur findings demonstrate that breed, litter, and age, are important contributors to variation in the community composition, and that treatment effects of the antibiotic and probiotic treatments were subtle, while host age was the dominant factor in shaping the gut microbiota of piglets after weaning. The current study shows, by means of a phylogenetic diversity framework, that the post-weaning pig gut microbiome appears to follow a highly structured developmental program with characteristic post-weaning changes that can distinguish hosts that were born as little as two days apart in the second month of life.


2021 ◽  
Vol 15 ◽  
Author(s):  
Jade E. Kenna ◽  
Eng Guan Chua ◽  
Megan Bakeberg ◽  
Alfred Tay ◽  
Sarah McGregor ◽  
...  

Background: There has been increasing recognition of the importance of the gut microbiome in Parkinson’s disease (PD), but the influence of geographic location has received little attention. The present study characterized the gut microbiota and associated changes in host metabolic pathways in an Australian cohort of people with PD (PwP).Methods: The study involved recruitment and assessment of 87 PwP from multiple Movement Disorders Clinics in Australia and 47 healthy controls. Illumina sequencing of the V3 and V4 regions of the 16S rRNA gene was used to distinguish inter-cohort differences in gut microbiota; KEGG analysis was subsequently performed to predict functional changes in host metabolic pathways.Results: The current findings identified significant differences in relative abundance and diversity of microbial operational taxonomic units (OTUs), and specific bacterial taxa between PwP and control groups. Alpha diversity was significantly reduced in PwP when compared to controls. Differences were found in two phyla (Synergistetes and Proteobacteria; both increased in PwP), and five genera (Colidextribacter, Intestinibacter, Kineothrix, Agathobaculum, and Roseburia; all decreased in PwP). Within the PD cohort, there was no association identified between microbial composition and gender, constipation or use of gastrointestinal medication. Furthermore, KEGG analysis identified 15 upregulated and 11 downregulated metabolic pathways which were predicted to be significantly altered in PwP.Conclusion: This study provides the first comprehensive characterization of the gut microbiome and predicted functional metabolic effects in a southern hemisphere PD population, further exploring the possible mechanisms whereby the gut microbiota may exert their influence on this disease, and providing evidence for the incorporation of such data in future individualized therapeutic strategies.


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 242-243
Author(s):  
Xiaofan Wang ◽  
Xiaoyuan Wei ◽  
Feilong Deng ◽  
Tsungcheng Tsai ◽  
Charles V Maxwell ◽  
...  

Abstract Substantial progress has been made in the culture-omics of the human gut microbiota. However, little is known about the culture-omics of the swine gut microbiota, despite recent reports of their significant roles in swine health and production. To fill this knowledge gap in research, we tested 52 bacterial cultivation methods with different media and gas combinations. Fresh fecal samples (0.2g/sample) were collected from three pigs at the end of four growth stages: lactation, nursery, growing and finishing and were mixed with a stomacher in 20 mL saline. Aliquots of 50 uL microbial suspensions were then spread onto different media plates and incubated under aerobic and anaerobic conditions at 37C for up to 5 days. An additional aliquot of each sample was subjected to direct DNA extraction as a positive control. Bacterial colonies from each plate were collected and DNA was extracted from these samples using the Powersoil DNA isolation kit and sequenced with an Illumina Miseq sequencer targeting the V4 region of the 16S rRNA gene. Sequences were analyzed with the Deblur algorithm in the QIIME2 package. A total of 378, 482, 565, and 555 bacterial features were observed from microbial solutions at the end of lactation, nursery, growing and finishing. Our culturing methods recovered 415, 675, 808, and 823 features correspondingly, representing 45.2%, 54.8%, 53.3%, and 56.4% of total features observed in microbial solutions. The top ten most easily cultured genus were Escherichia, Streptococcus, Lactobacillus, Megasphaera, Acidaminococcus, Bacillus, Mitsuokella, Enterococcus and Prevotella. Non-parametric permutational multivariate analysis of variance shows that the main factors driving the swine culture-omics included medium, age and oxygen condition. This study identifies the cultivable bacteria from fecal samples collected at different growth stages of pigs and provides a guidance to cultivate potential beneficial or pathogenic bacteria of interests and validate their functions in swine production.


2020 ◽  
Vol 79 (OCE2) ◽  
Author(s):  
Ilaria Carafa ◽  
Domenico Masuero ◽  
Urska Vrhovsek ◽  
Giovanni Bittante ◽  
Elena Franciosi ◽  
...  

AbstractConjugated linoleic acids (CLAs) show a number of putative health-promoting activities including anti-carcinogenic, anti-adipogenic, anti-diabetogenic, anti-inflammatory and antioxidant actions. CLAs are naturally produced by ruminal bacteria and several studies demonstrate that various lactobacilli and bifidobacteria are also able to produce CLAs in vitro from linoleic acid (LA). However, the ability of the human gut microbiota to produce CLA is less extensively studied. Our hypothesis is that the human gut microbiota is able to convert LA to CLA, and that the readily fermentable fiber inulin would positively modulate the growth of CLA-producing bacteria and, consequently increase the CLA content in the intestine.The capability of the faecal microbiota from five healthy donors to produce CLA was tested in anaerobic batch cultures for 48 hours at pH 5.5 and 6.5. Test treatments were linoleic acid (LA; 1 mg/mL) + bovine serum albumin (BSA; 0.2 mg/mL), and LA (1 mg/mL) + BSA (0.2 mg/mL) + inulin (1%, w/v) compared to a control BSA (0.2 mg/mL) fermentation. The microbial composition was analyzed 0, 24 and 48 hours after starting the fermentation by 16S rRNA gene Illumina MiSeq sequencing (V3-V4 region). CLAs were quantified by Ultra performance liquid chromatography - tandem mass spectrometer (UPLC-MS/MS) and bi-dimensional gas chromatography (GC x GC).The inclusion of LA + BSA + inulin at pH 5.5 significantly increased the relative abundance of Collinsella aerofaciens (p < 0.05), and tended to increase the relative abundance of bifidobacteria. LA + BSA + inulin at both pH 5.5 and 6.5 reduced the relative abundance of Parabacteroides, Bilophila, Clostridia and Enterobacteriaceae (p < 0.05). The concentration of CLA, in particular the isomer cis9,trans11 C18:2, was significantly higher in the LA + BSA + inulin group at pH 5.5 after 24 and 48 hours fermentation.The data show that the treatment LA + BSA + inulin at pH 5.5 induce substantial changes in microbiota composition, including bifidogenesis and CLA production in a human intestinal microbiota model. The changes of relative abundance detected are consistent with changes in gut bacteria previously linked to human health. Collinsella aerofaciens has been reported for reducing bloating, in particular in subjects suffering from irritable bowel syndrome, while Clostridia, Bilophila and Enterobacteriaceae causes human infections. In addition, the increase of bifidobacteria and LAB, which have previously been shown in vitro to produce CLA, may also be involved in CLA production under simulated cecal microbiome. These preclinical observations warrant confirmation in suitably designed animal and human mechanistic studies.


2021 ◽  
Author(s):  
Pil Soo Kim ◽  
Na-Ri Shin ◽  
Jae-Bong Lee ◽  
Min-Soo Kim ◽  
Tae Woong Whon ◽  
...  

Abstract Background: Our understanding of the gut microbiota of animals is largely based on studies of mammals. To better understand the evolutionary basis of symbiotic relationships between animal hosts and indigenous microbes, it is necessary to investigate the gut microbiota of non-mammalian vertebrate species. In particular, fish have the highest species diversity among groups of vertebrates, with approximately 33,000 species. In this study, we comprehensively characterized gut bacterial communities in fish.Results: We analyzed 227 individual fish representing 14 orders, 42 families, 79 genera, and 85 species. The fish gut microbiota was dominated by Proteobacteria (51.7%) and Firmicutes (13.5%), different from the dominant taxa reported in terrestrial vertebrates (Firmicutes and Bacteroidetes). The gut microbial community in fish was more strongly shaped by host habitat than by host taxonomy or trophic level. Using a machine learning approach trained on the microbial community composition or predicted functional profiles, we found that the host habitat exhibited the highest classification accuracy. Principal coordinate analysis revealed that the gut bacterial community of fish differs significantly from those of other vertebrate classes (reptiles, birds, and mammals).Conclusions: Collectively, these data provide a reference for future studies of the gut microbiome of aquatic animals as well as insights into the relationship between fish and their gut bacteria, including the key role of host habitat and the distinct compositions in comparison with those of mammals, reptiles, and birds.


2019 ◽  
Author(s):  
Erica Grant ◽  
Randall C. Kyes ◽  
Pensri Kyes ◽  
Pauline Trinh ◽  
Vickie Ramirez ◽  
...  

AbstractTraditional zoonotic disease research focuses on detection of recognized pathogens and may miss opportunities to understand broader microbial transmission dynamics between humans, animals, and the environment. We studied human-macaque microbiome overlap in Kosum Phisai District, Maha Sarakham Province, Thailand, where a growing population of long-tailed macaques (Macaca fascicularis) in Kosumpee Forest Park interact with humans from an adjacent village. We surveyed workers in or near the park with elevated exposure to macaques to characterize tasks resulting in exposure to macaque feces in addition to dietary and lifestyle factors that influence gut microbiome composition. Fecal samples were collected from 12 exposed workers and 6 controls without macaque exposure, as well as 8 macaques from Kosumpee Forest Park and 4 from an isolated forest patch with minimal human contact. The V4 region of the 16S rRNA gene from fecal sample extracted DNA was amplified and sequenced using Illumina HiSeq to characterize the microbial community. A permuted betadisper test on the weighted UniFrac distances revealed significant differences in the dispersion patterns of gut microbiota from exposed and control macaques (p=0.03). The high variance in gut microbiota composition of macaques in contact with humans has potential implications for gut microbiome stability and susceptibility to disease, described by the Anna Karenina principle (AKP). Human samples had homogenous variance in beta diversity but different spatial medians between groups (p=0.02), indicating a shift in microbial composition that may be explained by fundamental lifestyle differences between the groups unrelated to exposure status. SourceTracker was used to estimate the percent of gut taxa in exposed humans that was contributed by macaques. While one worker showed evidence of elevated contribution, the overall trend was not significant. Task observations among workers revealed opportunities to employ protective measures or training to reduce exposure to occupational hazards. These results suggest the potential for hygiene measures to mitigate negative aspects of contact between humans and macaques in order to optimize the health of both populations.


2020 ◽  
Author(s):  
Jun Li ◽  
Lin Sun ◽  
Chunfeng Mo ◽  
Xiangsheng Fu ◽  
Baijun Chen ◽  
...  

Abstract Background: Tibetans are one of the oldest ethnic groups in China and South Asia. Tibetan has a unique lifestyle and a long history, which leads to the particularity of their gut microflora in composition and function. Different from the Tibetan population on the Qinghai-Tibet Plateau, Tibetans in Minjiang River Basin have gradually increased their migration to Chengdu Plain in recent years. Based on the analysis of 1059 Tibetans in the Minjiang River Basin at an altitude of 500-4001m, we found that the dominant phylum of Tibetan population is Bacteroidea and Firmicum, and the main genera are Prevotella and Bacteroides. These findings reflect the characteristics of Tibetan population. Results: In order to further study the factors affecting gut microbial composition of Tibetan population, 115 total parameters of 7 categories were evaluated. The results showed that altitude was the most important factor affecting the variation of microbial community in Tibetan population, and the change of altitude promoted the succession of gut microbial community. In the process of migration from high altitude to plain, the intestinal microbial composition of late immigrants was similar to that of plateau aborigines, while that of early immigrants was similar to that of plain aborigines. Migration to Tibet is related to the loss of indigenous gut microbial community species. In addition, from low altitude to high altitude, the similarity of microbial community with high altitude population increased with the reproduction of offspring after marriage. And the change of these flora will affect the metabolism, disease and cell function of Tibetan population. The other two sets (AGP and Z208) of altitude data also show the impact of altitude on the microbial community. Conclusions: This is the first large-scale study on the influencing factors of gut microflora in Tibetan population. Our study confirmed that altitude change is the most important factor affecting the distribution of Tibetan population flora, and provided abundant and unique data to explore the interaction of impact parameter-gut microbiome-host function and disease.


Sign in / Sign up

Export Citation Format

Share Document