scholarly journals Verification of Hypsibius exemplaris Gąsiorek et al., 2018 (Eutardigrada; Hypsibiidae) application in anhydrobiosis research

2021 ◽  
Author(s):  
Izabela Poprawa ◽  
Tomasz Bartylak ◽  
Adam Kulpla ◽  
Weronika Erdmann ◽  
Milena Roszkowska ◽  
...  

AbstractAnhydrobiosis is considered to be an adaptation of important applicative implications because it enables resistance to the lack of water. The phenomenon is still not well understood at molecular level. Thus, a good model invertebrate species for the research is required. The best known anhydrobiotic invertebrates are tardigrades (Tardigrada), considered to be toughest animals in the world. Hypsibius. exemplaris is one of the best studied tardigrade species, with its name “exemplaris” referring to the widespread use of the species as a laboratory model for various types of research. However, available data suggest that anhydrobiotic capability of the species may be overestimated. Therefore, we determined anhydrobiosis survival by Hys. exemplaris specimens using three different anhydrobiosis protocols. We also checked ultrastructure of storage cells within formed dormant structures (tuns) that has not been studied yet for Hys. exemplaris. These cells are known to support energetic requirements of anhydrobiosis. The obtained results indicate that Hys. exemplaris appears not to be a good model species for anhydrobiosis research.

Author(s):  
Malireddy S Reddy

The worldwide popularity of Dr. M.S. Reddy’s Multiple Mixed Strain Probiotic Therapy to treat or prevent the hospital acquired infections (nosocomial infections) arose a great interest in the medical community around the world (Reddy and Reddy, 2016; 2017). The following questions were raised on this subject: Does Multiple Mixed Strain Probiotics directly inhibit the pathogenic bacteria (C. diff) in the gastrointestinal tract or indirectly through modulation of the host immune system or both? To be more specific, what is the exact and/or hypothetical mechanism at molecular level behind the breakthrough discovery of Dr. M.S. Reddy’s Multiple Mixed Strain Probiotic Therapy?  To answer these questions, the specific immunomodulation regulatory functions of the individual Probiotic strains (on host) have beenresearched, investigated andoutlined in this article.  A detailed explanation(s) and hypotheses have been proposed outlining the possible cumulativedirect bacteriological and indirect immunomodulatory effects (at the molecular level) of the Multiple Mixed Strain Probiotics used in Dr. M.S. Reddy’s Multiple Mixed Strain Probiotic Therapy to successfully treat C. diff infection.  A detailed scientific and research attempts were made to correlate the Probiotic induced immune activities in relation to the reduction of the symptoms associated with the hospital acquired Clostridium difficile infection during and after the Multiple Mixed Strain Probioitc Therapy.  Results of the clinical trials, microbiological tests on feces, and the clinical blood tests significantly revealed that the reasons for the success of Dr. Reddy’s Multiple Mixed Strain Probiotic Therapy are multifold. Presumably, it is predominantly due to the immunomodulatory effect they have exerted on the host immune system along with the direct inhibition of C. diff bacteria by multiple Probiotics, due to the production of bacteriocins, lactic acid and nutritional competency.In addition, the size of the individual cells of the Probiotic strains in the Multiple Mixed Strain Probiotics and their significant effect on immunomodulation has been thoroughly discussed. Results clearly proved that if Probiotics are absent in the GI tract during C. diff infection, the chances of patient survival is zero.  This is because of the excess immune stimulation and incurable damage to the epithelial cell barrier of the gastrointestinal tract caused by C. diff bacteria.  The results also revealed, without any doubt, as of to-datethe latest discovery of Dr. M.S. Reddy’s Multiple Mixed Strain Probiotic Therapy is the best way to cure the deadly hospital acquired infections affecting millions of people around the world, with high degree of mortality.  This has been attested by several practicng medical professionals and scientists around the world (Reddy and Reddy, 2017).


Insects ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 317 ◽  
Author(s):  
Javier Tello ◽  
Astrid Forneck

Grape phylloxera (Daktulosphaira vitifoliae Fitch) is a major pest of cultivated grapevines (Vitis spp.), occurring in virtually all viticultural regions around the world. Different grape phylloxera strains can be found at varying levels on leaves and roots on both own-rooted plants and in plants grafted onto partially resistant rootstocks. Considering its relevance for the adequate management of the pest in infested vineyards, the analysis of its genetic diversity has received considerable attention from the scientific community in the last decades. Here, we review 25 years of DNA-based molecular markers applied to the analysis of the genetic structure and the reproductive mode of grape phylloxera in its native range and in different introduced regions. The use given to RAPD, AFLP, mtDNA sequencing and microsatellite (SSR) genetic markers for the analysis of grape phylloxera diversity is discussed, and an overview of the main findings obtained after their application to different populations collected in diverse regions all around the world is shown. Lastly, we explore how recent advancements in molecular biology and in modern high throughput genotyping technologies may be applied to better understand grape phylloxera natural diversity at a molecular level.


2019 ◽  
Vol 70 (9) ◽  
pp. 2403-2418 ◽  
Author(s):  
Andrew J Millar ◽  
Uriel Urquiza ◽  
Peter L Freeman ◽  
Alastair Hume ◽  
Gordon D Plotkin ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Ganiy Opeyemi Abdulrahman ◽  
Ganiyu Adebisi Rahman

Breast cancer continues to remain the most lethal malignancy in women across the world. This study reviews some of the epidemiological similarities and differences in breast cancer between white European women and black African women with the aim of optimising care for women with breast malignancy across the world. The incidence of breast cancer is lower among African women than their European counterparts. Majority of women in Europe are postmenopausal when they present with breast cancer; however, the peak incidence among African women is in the premenopausal period. Ductal carcinoma is the commonest type of breast cancer among women in Africa and Europe. However, medullary and mucinous carcinomas are more common in Africa than in Europe. While European women usually present at an early stage especially with the advent of screening, African women generally present late for treatment resulting in lower survival rates. There should be more research at the molecular level among African women to identify genetic factors that may contribute to the risk of developing breast cancer. There should also be improvement in the health care system in Africa in order to optimise care for women with breast cancer.


Author(s):  
Matteo De Chiara ◽  
Benjamin Barré ◽  
Karl Persson ◽  
Amadi Onyetuga Chioma ◽  
Agurtzane Irizar ◽  
...  

AbstractDomestication of plants and animals is the foundation for feeding the world population. We report that domestication of the model yeast S. cerevisiae reprogrammed its life cycle entirely. We tracked growth, gamete formation and cell survival across many environments for nearly 1000 genome sequenced isolates and found a remarkable dichotomy between domesticated and wild yeasts. Wild yeasts near uniformly trigger meiosis and sporulate when encountering nutrient depletions, whereas domestication relaxed selection on sexual reproduction and favoured survival as quiescent cells. Domestication also systematically enhanced fermentative over respiratory traits while decreasing stress tolerance. We show that this yeast domestication syndrome was driven by aneuploidies and gene function losses that emerged independently in multiple domesticated lineages during the specie’s recent evolutionary history. We found domestication to be the most dramatic event in budding yeast evolution, raising questions on how much domestication has distorted our understanding of this key model species.


Author(s):  
Uttam Kumar ◽  
Suneel Kumar ◽  
Ravi P. Singh ◽  
Arun Kumar Joshi ◽  
Marion S. Röder ◽  
...  

Leaf rust and spot blotch are among most important wheat diseases causing substantial yield losses in several parts of the world. The studies at phenotypic level suggested that, leaf tip necrosis (LTN) not only associated with multi fungal resistance gene Lr34 but also confer spot blotch resistance. This LTN – spot blotch association has not been tested at molecular level and hardly validated in different genetic backgrounds. A total of 87 near isogenic lines (NILs) segregating for Lr34 gene were evaluated for spot blotch resistance and genotyped with the molecular markers linked to QTL QSb.bhu-7D. A set of 147 advanced breeding lines was also evaluated for spot blotch besides being genotyped with markers belonging to Lr34 genic region. Out of 14 markers located on chromosome 7D, four markers segregated in NILs. The genotypic and phenotypic results indicated that the markers reportedly linked with spot blotch differentiate Lr34+ and Lr34- lines and vice versa. This supports the hypothesis that Lr34, Yr18 and QSb.bhu-7D lies in the same gene region. Hence, the linked markers may be used to select both for Lr34 and spot blotch resistant lines.


Birds ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 60-76
Author(s):  
Simon C. Griffith ◽  
Riccardo Ton ◽  
Laura L. Hurley ◽  
Callum S. McDiarmid ◽  
Hector Pacheco-Fuentes

Zebra Finches have become the most widely researched bird species outside of those used in agricultural production. Their adoption as the avian model of choice is largely down to a number of characteristics that make them easy to obtain and use in captivity. The main point of our paper is that the very characteristics that make the Zebra Finch a highly amenable laboratory model species mean that it is by definition different from many other passerine birds, and therefore not a good general model for many research areas. The Zebra Finch is likely to be particularly resilient to the effects of stress early in life, and is likely to show great flexibility in dealing with a wide variety of conditions later in life. Whilst it is tempting for researchers to turn to species such as the Zebra Finch, that can be the focus of manipulative work in the laboratory, we caution that the findings of such studies may confound our understanding of general avian biology. The Zebra Finch will remain an excellent species for laboratory work, and our paper should help to direct and interpret future work in the laboratory and the field.


Author(s):  
Aline Dias da Purificação ◽  
Nathalia Marins de Azevedo ◽  
Gabriel Guarany de Araujo ◽  
Robson Francisco de Souza ◽  
Cristiane Rodrigues Guzzo

The regulation of multiple bacterial phenotypes was found to depend on different cyclic di-nucleotides (CDNs) that constitute intracellular signalling second messenger systems. Most notably, c-di-GMP, along with proteins related to its synthesis, sensing and degradation, was identified as playing a central role in the switching from biofilm to planktonic modes of growth. Recently, this world has been under expansion, with the discoveries of other signalling CNDs in bacteria (c-di-AMP and cGAMP) and also in eukaryotes, novel protein and RNA receptors of CDNs, and the numerous functions related to these molecules. In this work, we comprehensively review and analyse the structural biology data about the systems that bacteria use to synthesise and recognise CDNs, detailing their interactions at molecular level with their products/ligands. Additional interesting observations were made, including that different receptor types can bind CDNs in similar conformations and that, based on genomic data, different CDN second messenger systems may coexist in many organisms. The large amount of sequence and structural data available allows a broad view of the importance of CDNs in bacteria, but how cells coordinate these molecules to ensure adaptation to changing environmental conditions is still open for much further exploration.


2021 ◽  
Vol 1 ◽  
pp. 1-6
Author(s):  
Nitai Chandra Mandal

Coronavirus-2019, also called Severe Acute Respiratory Syndrome Coronavirus-2019 or SARS-CoV-2 was first reported from China at the end of December 2019 through transmission into man from bat and it produced severe type of pneumonia in the infected people. Within the next month (January 2020), the virus started its world-wide journey after it successfully established the transmission path from man to man and thus created pandemic and caused epidemic. Facing a deadly challenge of the virus, the scientists all over the world, starting from almost zero-level knowledge about the virus, worked hard to know most of characters related to its biology and pathology at molecular level thereby enriching knowledge which helped in development of various tools and technologies to control the virus and develop protection and prevention methods including production of vaccine against the virus. Nevertheless, to exert a better control over the virus, it is necessary to have knowledge of various details about how the virus has been evolved. During the last one year, research work done by the scientists all over the world have produced voluminous data in this area, though in a scattered way. That information indicates that the virus is actively evolving continuously to generate new strains through gain of function mutations for its survival. In this short review, I have made an attempt to put together that information to highlight the present status of our knowledge about the mechanisms of evolution of SARS-CoV-2 at molecular level.


2005 ◽  
Vol 11 (3) ◽  
pp. 198 ◽  
Author(s):  
Stephen A. Mallick ◽  
Michael M. Driessen

This paper summarizes the information contained in an inventory of invertebrates recorded from the Tasmanian Wilderness World Heritage Area (WHA). The WHA covers an area of 1.38 million hectares in the western half of Tasmania. A total of 1397 terrestrial/freshwater species from 293 families in nine phyla are listed as occurring in the WHA. The most diverse phylum is the Uniramia (904 species, 172 families), followed by the Chelicerata (179 species, 56 families), Aschelminthes (Rotifera: 90 species, 22 families), Crustacea (88 species, 21 families), Mollusca (69 species, 14 families), Annelida (57 species, five families), Platyhelminthes (eight species, one family), and the Onychophora and Nemertea (one species each). Sixty-three marine and estuarine species from six phyla are listed for the limited area of marine/estuarine habitat within the WHA. The terrestrial/freshwater WHA invertebrate fauna is characterized by high Tasmanian endemism (46.7% of species are Tasmanian endemics), and a high proportion of species with a predominantly western-Tasmanian distribution and/or a restricted geographical range. The WHA includes the globally unique Bathurst Harbour estuarine system. The marine and estuarine invertebrate fauna of the estuary is largely undescribed, but is likely to show very high levels of Tasmanian and local endemicity. The characteristics of the WHA invertebrate fauna reflect the extant habitats of the area, as well as past geological and climatic processes that have led to their development. The WHA contains 16 threatened invertebrate species, while a total of 34 introduced terrestrial and seven introduced marine invertebrate species have been recorded from the WHA. The invertebrate fauna of the WHA contributes substantially to the World Heritage faunal values of the area. Formal description of currently undescribed material from Bathurst Harbour is likely to substantially add to the World significance of the WHA. The high level of protection afforded the WHA makes the area important for long-term invertebrate fauna conservation in Tasmania. A full inventory of species can be viewed on the Tasmanian Department of Primary Industries, Water and Environment (DPIWE) website (www.dpiwe.tas.gov.au).


Sign in / Sign up

Export Citation Format

Share Document