scholarly journals Changes of small non-coding RNAs by severe acute respiratory syndrome coronavirus 2 infection

2021 ◽  
Author(s):  
Wenzhe Wu ◽  
Eun-Jin Choi ◽  
Binbin Wang ◽  
Ke Zhang ◽  
Awadalkareem Adam ◽  
...  

The ongoing pandemic of coronavirus disease 2019 (COVID-19), which results from the rapid spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a significant global public health threat, with molecular mechanisms underlying its pathogenesis largely unknown. Small non-coding RNAs (sncRNAs) are known to play important roles in almost all biological processes. In the context of viral infections, sncRNAs have been shown to regulate the host responses, viral replication, and host-virus interaction. Compared with other subfamilies of sncRNAs, including microRNAs (miRNAs) and Piwi-interacting RNAs (piRNAs), tRNA-derived RNA fragments (tRFs) are relatively new and emerge as a significant regulator of host-virus interactions. Using T4 PNK-RNA-seq, a modified next-generation sequencing (NGS), we recently found that nasopharyngeal swabs (NPS) samples from SARS-CoV-2 positive and negative subjects show a significant difference in sncRNA profiles. There are about 166 SARS-CoV-2-impacted sncRNAs. Among them, tRFs are the most significantly affected and almost all impacted tRFs are derived from the 5'-end of tRNAs (tRF5). Using a modified qRT-PCR, which was recently developed to specifically quantify tRF5s by isolating the tRF signals from its corresponding parent tRNA signals, we validated that tRF5s derived from tRNA GluCTC (tRF5-GluCTC), LysCTT (tRF5-LysCTT), ValCAC (tRF5-ValCAC), CysGCA (tRF5-CysGCA) and GlnCTG (tRF5-GlnCTG) are enhanced in NPS samples of SARS-CoV2 patients and SARS41 CoV2-infected airway epithelial cells. In addition to host-derived ncRNAs, we also identified several sncRNAs derived from the virus (svRNAs), among which a svRNA derived from CoV2 genomic site 346 to 382 (sv-CoV2-346) has the highest expression. The induction of both tRFs and sv-CoV2-346 has not been reported previously, as the lack of the 3'-OH ends of these sncRNAs prevents them to be detected by routine NGS. In summary, our studies demonstrated the involvement of tRFs in COVID-19 and revealed new CoV2 svRNAs.

2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Rakesh K. Kumar ◽  
Jessica S. Siegle ◽  
Gerard E. Kaiko ◽  
Cristan Herbert ◽  
Joerg E. Mattes ◽  
...  

The pathogenesis of allergic asthma in childhood remains poorly understood. Environmental factors which appear to contribute to allergic sensitisation, with development of a Th2-biased immunological response in genetically predisposed individuals, include wheezing lower respiratory viral infections in early life and exposure to airborne environmental pollutants. These may activate pattern recognition receptors and/or cause oxidant injury to airway epithelial cells (AECs). In turn, this may promote Th2 polarisation via a “final common pathway” involving interaction between AEC, dendritic cells, and CD4+ T lymphocytes. Potentially important cytokines produced by AEC include thymic stromal lymphopoietin and interleukin-25. Their role is supported by in vitro studies using human AEC, as well as by experiments in animal models. To date, however, few investigations have employed models of the induction phase of childhood asthma. Further research may help to identify interventions that could reduce the risk of allergic asthma.


Cells ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1652
Author(s):  
Tiziana Corsello ◽  
Andrzej S. Kudlicki ◽  
Roberto P. Garofalo ◽  
Antonella Casola

Exposure to environmental tobacco smoke (ETS) is a known risk factor for the development of chronic lung diseases, cancer, and the exacerbation of viral infections. Extracellular vesicles (EVs) have been identified as novel mediators of cell–cell communication through the release of biological content. Few studies have investigated the composition/function of EVs derived from human airway epithelial cells (AECs) exposed to cigarette smoke condensate (CSC), as surrogates for ETS. Using novel high-throughput technologies, we identified a diverse range of small noncoding RNAs (sncRNAs), including microRNA (miRNAs), Piwi-interacting RNA (piRNAs), and transfer RNA (tRNAs) in EVs from control and CSC-treated SAE cells. CSC treatment resulted in significant changes in the EV content of miRNAs. A total of 289 miRNAs were identified, with five being significantly upregulated and three downregulated in CSC EVs. A total of 62 piRNAs were also detected in our EV preparations, with five significantly downregulated and two upregulated in CSC EVs. We used TargetScan and Gene Ontology (GO) analysis to predict the biological targets of hsa-miR-3913-5p, the most represented miRNA in CSC EVs. Understanding fingerprint molecules in EVs will increase our knowledge of the relationship between ETS exposure and lung disease, and might identify potential molecular targets for future treatments.


2020 ◽  
Vol 48 (7) ◽  
pp. 3513-3524 ◽  
Author(s):  
Monali NandyMazumdar ◽  
Shiyi Yin ◽  
Alekh Paranjapye ◽  
Jenny L Kerschner ◽  
Hannah Swahn ◽  
...  

Abstract The CFTR gene lies within an invariant topologically associated domain (TAD) demarcated by CTCF and cohesin, but shows cell-type specific control mechanisms utilizing different cis-regulatory elements (CRE) within the TAD. Within the respiratory epithelium, more than one cell type expresses CFTR and the molecular mechanisms controlling its transcription are likely divergent between them. Here, we determine how two extragenic CREs that are prominent in epithelial cells in the lung, regulate expression of the gene. We showed earlier that these CREs, located at −44 and −35 kb upstream of the promoter, have strong cell-type-selective enhancer function. They are also responsive to inflammatory mediators and to oxidative stress, consistent with a key role in CF lung disease. Here, we use CRISPR/Cas9 technology to remove these CREs from the endogenous locus in human bronchial epithelial cells. Loss of either site extinguished CFTR expression and abolished long-range interactions between these sites and the gene promoter, suggesting non-redundant enhancers. The deletions also greatly reduced promoter interactions with the 5′ TAD boundary. We show substantial recruitment of RNAPII to the −35 kb element and identify CEBPβ as a key activator of airway expression of CFTR, likely through occupancy at this CRE and the gene promoter.


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Mutsuo Yamaya

Infection with respiratory viruses, including rhinoviruses, influenza virus, and respiratory syncytial virus, exacerbates asthma, which is associated with processes such as airway inflammation, airway hyperresponsiveness, and mucus hypersecretion. In patients with viral infections and with infection-induced asthma exacerbation, inflammatory mediators and substances, including interleukins (ILs), leukotrienes and histamine, have been identified in the airway secretions, serum, plasma, and urine. Viral infections induce an accumulation of inflammatory cells in the airway mucosa and submucosa, including neutrophils, lymphocytes and eosinophils. Viral infections also enhance the production of inflammatory mediators and substances in airway epithelial cells, mast cells, and other inflammatory cells, such as IL-1, IL-6, IL-8, GM-CSF, RANTES, histamine, and intercellular adhesion molecule-1. Viral infections affect the barrier function of the airway epithelial cells and vascular endothelial cells. Recent reports have demonstrated augmented viral production mediated by an impaired interferon response in the airway epithelial cells of asthma patients. Several drugs used for the treatment of bronchial asthma reduce viral and pro-inflammatory cytokine release from airway epithelial cells infected with viruses. Here, I review the literature on the pathogenesis of the viral infection-induced exacerbation of asthma and on the modulation of viral infection-induced airway inflammation.


2016 ◽  
Vol 311 (2) ◽  
pp. L421-L432 ◽  
Author(s):  
Sarah K. Sasse ◽  
Mohammed O. Altonsy ◽  
Vineela Kadiyala ◽  
Gaoyuan Cao ◽  
Reynold A. Panettieri ◽  
...  

Airway smooth muscle is a major target tissue for glucocorticoid (GC)-based asthma therapies, however, molecular mechanisms through which the GC receptor (GR) exerts therapeutic effects in this key airway cell type have not been fully elucidated. We previously identified the nuclear factor-κB (NF-κB) inhibitor, A20 (TNFAIP3), as a mediator of cytokine repression by glucocorticoids (GCs) in airway epithelial cells and defined cooperative regulation of anti-inflammatory genes by GR and NF-κB as a key mechanistic underpinning of airway epithelial GR function. Here, we expand on these findings to determine whether a similar mechanism is operational in human airway smooth muscle (HASM). Using HASM cells derived from normal and fatal asthma samples as an in vitro model, we demonstrate that GCs spare or augment TNF-mediated induction of A20 ( TNFAIP3), TNIP1, and NFKBIA, all implicated in negative feedback control of NF-κB-driven inflammatory processes. We applied chromatin immunoprecipitation and reporter analysis to show that GR and NF-κB directly regulate A20 expression in HASM through cooperative induction of an intronic enhancer. Using overexpression, we show for the first time that A20 and its interacting partner, TNIP1, repress TNF signaling in HASM cells. Moreover, we applied small interfering RNA-based gene knockdown to demonstrate that A20 is required for maximal cytokine repression by GCs in HASM. Taken together, our data suggest that inductive regulation of A20 by GR and NF-κB contributes to cytokine repression in HASM.


2001 ◽  
Vol 276 (50) ◽  
pp. 47136-47142 ◽  
Author(s):  
Theresa D. Joseph ◽  
Dwight C. Look

Adenoviral evolution has generated strategies to resist host cell antiviral systems, but molecular mechanisms for evasion of interferon (IFN) effects by adenoviruses during late-phase infection are poorly defined. In this study, we examined adenovirus type 5 (AdV) effects on IFN-γ-dependent gene expression and Janus family kinase-signal transducer and activator of transcription signaling components in human tracheobronchial epithelial cells. We found that AdV infection specifically inhibited IFN-γ-dependent gene expression in airway epithelial cells without evidence of epithelial cell injury or generation of a soluble extracellular inhibitor. Furthermore, infection with AdV for 18–24 h blocked phosphorylation/activation of the Stat1 transcription factor that regulates IFN-γ-dependent genes. Although AdV also inhibited IFN-α-dependent phosphorylation of Stat1 and Stat2, interleukin-4-dependent phosphorylation of the related transcription factor Stat6 was not affected, indicating that the virus selectively affected specific signaling pathways. Our results indicate that AdV inhibition of the IFN-γ signal transduction cascade occurs through loss of ligand-induced receptor complex assembly and consequent component phosphorylation and suggest that lack of complex assembly is due to decreased expression of the IFN-γR2 chain of the IFN-γ receptor. IFN-γR2 is required at an early step in Janus family kinase-signal transducer and activator of transcription pathway activation and is expressed at low levels in airway epithelial cells, supporting the concept that adenoviral down-regulation of the level of this IFN-γ receptor component allows for persistent modulation of IFN-γ-dependent gene expression.


2021 ◽  
Vol 9 (2) ◽  
pp. 60-69
Author(s):  
Ridwan Olamilekan Adesola ◽  
Oluwatobi Emmanuel Oladele ◽  
Ahmed Oluwasegun Tajudeen ◽  
Ogundepo Oluwatobi Moses ◽  
Murali Dinesh

Coronavirus disease 2019 (COVID-19), confirmed as the global pandemic on March 11, 2020, by the World Health Organization (WHO), was caused by the outbreak of an emergent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which was first reported in Wuhan city, China, in December 2019. Based on the previous pandemic, such as severe acute respiratory syndrome (SARS) from 2002 to 2003, Middle East respiratory syndrome coronavirus (MERS-CoV) in 2012. The scientific developments have fast-tracked our insights SARS-CoV-2 epidemiology, likewise vaccinology relevant for developing drugs for viral infections treatment. As there are not many detailed interventions and vaccines available for disease control, the pandemic COVID-19 poses countless threats to global public health, causing a great level of insecurity and unrest worldwide. To provide an inclusive overview to global health authorities and prospective readers worldwide, we detailed in this review the epidemiology and vaccinology of SARS-CoV-2 in Nigeria.


Sign in / Sign up

Export Citation Format

Share Document