scholarly journals Influential factors of saliva microbiota composition

2021 ◽  
Author(s):  
Philippa M Wells ◽  
Daniel D Sprockett ◽  
Ruth CE Bowyer ◽  
Yuko Kurushima ◽  
Frances MK Williams ◽  
...  

Background: The oral microbiota is emerging as an influential factor of host physiology and disease state. Factors influencing oral microbiota composition have not been well characterised. In particular, there is a lack of population-based studies. We undertook a large hypothesis-free study of the saliva microbiota, considering potential influential factors of host health (frailty; diet; periodontal disease), demographics (age; sex; BMI) and sample processing (storage time), in a sample (n=679) of the TwinsUK cohort of adult twins. Results: Alpha and beta diversity of the saliva microbiota was associated most strongly with frailty (alpha diversity: Q = 0.003, Observed; Q=0.002, Shannon; Q=0.003, Simpson; Beta diversity: Q = 0.002, Bray Curtis dissimilarity ) and age (alpha diversity: Q=0.006, Shannon; Q=0.003, Simpson; beta diversity: Q=0.002, Bray Curtis dissimilarity; Q= 0.032, Weighted UniFrac) in multivariate models including age, frailty, sex, BMI, frailty and diet, and adjustment for multiple testing. Those with a more advanced age were more likely to be dissimilar in the saliva microbiota composition than younger participants (P = 5.125e-06, ANOVA). In subsample analyses, including consideration of periodontal disease (total n=138, periodontal disease n=66), the association with frailty remained for alpha diversity (Q=0.002, Observed ASVs; Q= 0.04 Shannon Index), but not beta diversity, whilst age was not demonstrated to associate with alpha or beta diversity in this subsample, potentially due to insufficient statistical power. Length of time that samples were stored prior to sequencing was associated with beta diversity (Q = 0.002, Bray Curtis dissimilarity). Six bacterial taxa were associated with age after adjustment for frailty and diet. Conclusions: Frailty and age emerged as the most influential factors of saliva microbiota composition. Whilst frailty and age are correlates, the associations were independent of each other, suggesting that both biological and chronological ageing are key drivers of saliva microbiota composition.

2021 ◽  
Vol 9 (8) ◽  
pp. 1616
Author(s):  
Natalia S. Rozas ◽  
Gena D. Tribble ◽  
Cameron B. Jeter

Patients with Parkinson’s disease (PD) are at increased risk of aspiration pneumonia, their primary cause of death. Their oral microbiota differs from healthy controls, exacerbating this risk. Our goal was to explore if poor oral health, poor oral hygiene, and dysphagia status affect the oral microbiota composition of these patients. In this cross-sectional case-control study, the oral microbiota from hard and soft tissues of patients with PD (n = 30) and age-, gender-, and education-matched healthy controls (n = 30) was compared using 16S rRNA gene sequencing for bacterial identification. Study participants completed dietary, oral hygiene, drooling, and dysphagia questionnaires, and an oral health screening. Significant differences in soft tissue beta-diversity (p < 0.005) were found, and a higher abundance of opportunistic oral pathogens was detected in patients with PD. Factors that significantly influenced soft tissue beta-diversity and microbiota composition include dysphagia, drooling (both p < 0.05), and salivary pH (p < 0.005). Thus, patients with PD show significant differences in their oral microbiota compared to the controls, which may be due, in part, to dysphagia, drooling, and salivary pH. Understanding factors that alter their oral microbiota could lead to the development of diagnostic and treatment strategies that improve the quality of life and survivability of these patients.


Nutrients ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1346 ◽  
Author(s):  
Nuria Jiménez-Hernández ◽  
Sergio Serrano-Villar ◽  
Alba Domingo ◽  
Xavier Pons ◽  
Alejandro Artacho ◽  
...  

Human immunodeficiency virus (HIV) infection is characterized by an early depletion of the mucosal associated T helper (CD4+) cells that impair the host immunity and impact the oral and gut microbiomes. Although, the HIV-associated gut microbiota was studied in depth, few works addressed the dysbiosis of oral microbiota in HIV infection and, to our knowledge, no studies on intervention with prebiotics were performed. We studied the effect of a six-week-long prebiotic administration on the salivary microbiota in HIV patients and healthy subjects. Also, the co-occurrence of saliva microorganisms in the fecal bacteria community was explored. We assessed salivary and feces microbiota composition using deep 16S ribosomal RNA (rRNA) gene sequencing with Illumina methodology. At baseline, the different groups shared the same most abundant genera, but the HIV status had an impact on the saliva microbiota composition and diversity parameters. After the intervention with prebiotics, we found a drastic decrease in alpha diversity parameters, as well as a change of beta diversity, without a clear directionality toward a healthy microbiota. Interestingly, we found a differential response to the prebiotics, depending on the initial microbiota. On the basis of 100% identity clustering, we detected saliva sequences in the feces datasets, suggesting a drag of microorganisms from the upper to the lower gastrointestinal tract.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 1907.2-1907
Author(s):  
Y. Tsuji ◽  
M. Tamai ◽  
S. Morimoto ◽  
D. Sasaki ◽  
M. Nagayoshi ◽  
...  

Background:Anti-citrullinated protein antibody (ACPA) production is observed in several organs even prior to the onset of rheumatoid arthritis (RA), and oral mucosa is considered to be one of the important tissues. The presence of HLA-DRB1*SE closely associates with ACPA production. Saliva is considered to reflect the oral microbiota including periodontal disease. Alteration of oral microbiota of RA becomes to be normalized by DMARDs treatment, however, the interaction of HLA-DRB1*SE, ACPA and oral microbiota of RA patients remains to be elucidated.Objectives:The Nagasaki Island Study, which had started in 2014 collaborating with Goto City, is intended for research of the preclinical stage of RA, including ACPA/HLA genotype screening and ultrasound and magnetic resonance imaging examinations in high-risk subjects. Using the samples accumulated in this cohort, we have tried to investigate the difference of oral microbiota among RA patients and healthy subjects regarding to ACPA and HLA-DRB1*SE.Methods:Blood and salivary samples were obtained from 1422 subjects out of 4276 who have participated in the Nagasaki Island Study from 2016 to 2018. ACPA positivity was 1.7 % in total. Some of RA patients resided in Goto City participated in the Nagasaki Island Study. At this point, we selected 291 subjects, who were ACPA positive non-RA healthy subjects (n=22) and patients with RA (n=33, 11 subjects were ACPA positive and 22 ACPA negative respectively) as the case, age and gender matched ACPA negative non-RA healthy subjects (n=236) as the control. ACPA was measured by an enzyme-linked immunosorbent assay, and HLA genotyping was quantified by next-generation sequencing (Ref.1). The operational taxonomic unit (OUT) analysis using 16S rRNA gene sequencing were performed. The richness of microbial diversity within-subject (alpha diversity) was scaled via Shannon entropy. The dissimilarity between microbial community composition was calculated using Bray-Curtis distance as a scale, and differences between groups (beta diversity) were tested by permutational multivariate analysis of variance (PERMANOVA). In addition, UniFrac distance calculated in consideration of the distance on the phylogenetic tree were performed.Results:Median age 70 y.o., % Female 58.8 %. Among RA and non-RA subjects, not alpha diversity but beta diversity was statistically significance (p=0.022, small in RA). In RA subjects, both alpha and beta diversity is small (p<0.0001), especially significant in ACPA positive RA (Figure 1). Amongt RA subjects, presence of HLA-DRB1*SE did not show the difference but the tendency of being small of alpha diversity (p=0.29).Conclusion:Our study has suggested for the first time the association of oral microbiota alteration with the presence of ACPA and HLA-DRB1*SE. Oral dysbiosis may reflect the immunological status of patients with RA.References:[1]Kawaguchi S, et al. Methods Mol Biol 2018;1802: 22Disclosure of Interests:None declared


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Beatrice Kennedy ◽  
Sari Peura ◽  
Ulf Hammar ◽  
Silvia Vicenzi ◽  
Anna Hedman ◽  
...  

AbstractEarly life determinants of the oral microbiota have not been thoroughly elucidated. We studied the association of birth and early childhood characteristics with oral microbiota composition using 16 S ribosomal RNA (rRNA) gene sequencing in a population-based Swedish cohort of 59 children sampled at 6, 12 and 24 months of age. Repeated-measurement regression models adjusted for potential confounders confirmed and expanded previous knowledge about the profound shift of oral microbiota composition in early life. These alterations included increased alpha diversity, decreased beta diversity and alteration of bacterial composition with changes in relative abundance of 14 of the 20 most common operational taxonomic units (OTUs). We also found that birth characteristics, breastfeeding and antibiotic use were associated with overall phyla distribution and/or with the relative abundance of specific OTUs. Further, we detected a novel link between morning salivary cortisol level, a physiological marker of neuroendocrine activity and stress, and overall phyla distribution as well as with decreased abundance of the most common OTU mapped to the Streptococcaceae family. In conclusion, a major part of the maturation of the oral microbiome occurs during the first two years of life, and this development may be influenced by early life circumstances.


Author(s):  
Tian Liang ◽  
Fang Liu ◽  
Lijun Liu ◽  
Zhiying Zhang ◽  
Wenxue Dong ◽  
...  

The human oral microbiota plays a vital role in maintaining metabolic homeostasis. To explore the relationship between Helicobacter pylori (Hp) and reflux esophagitis, we collected 86 saliva samples from reflux esophagitis patients (RE group) and 106 saliva samples from healthy people (C group) for a high-throughput sequencing comparison. No difference in alpha diversity was detected between the RE and the C groups, but beta diversity of the RE group was higher than the C group. Bacteroidetes was more abundant in the RE group, whereas Firmicutes was more abundant in the C group. The linear discriminant analysis effect size analysis demonstrated that the biomarkers of the RE group were Prevotella, Veillonella, Leptotrichia, and Actinomyces, and the biomarkers of the C group were Lautropia, Gemella, Rothia, and Streptococcus. The oral microbial network structure of the C group was more complex than that of the RE group. Second, to explore the effect of Hp on the oral microbiota of RE patients, we performed the 14C-urea breath test on 45 of the 86 RE patients. We compared the oral microbiota of 33 Hp-infected reflux esophagitis patients (REHpp group) and 12 non-Hp-infected reflux esophagitis patients (REHpn group). No difference in alpha diversity was observed between the REHpn and REHpp groups, and beta diversity of the REHpp group was significantly lower than that of the REHpn group. The biomarkers in the REHpp group were Veillonella, Haemophilus, Selenomonas, Megasphaera, Oribacterium, Butyrivibrio, and Campylobacter; and the biomarker in the REHpn group was Stomatobaculum. Megasphaera was positively correlated with Veillonella in the microbial network of the REHpp group. The main finding of this study is that RE disturbs the human oral microbiota, such as increased beta diversity. Hp infection may inhibit this disorderly trend.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ricardo A. Scrosati ◽  
Alexis M. Catalán ◽  
Nelson Valdivia

Abstract Species diversity in a habitat is often termed alpha diversity. As it influences various community properties, many studies have investigated its drivers. For instance, intertidal macroalgal canopies limit understory thermal stress during low tides and thus often increase alpha diversity. More recently, beta diversity has also become of interest. Beta diversity measures the change in species composition across space and is another important attribute of communities because it influences their multifunctionality, productivity, and resilience. Using data from a field experiment done in Atlantic Canada, we tested the hypothesis that fucoid macroalgal canopies limit beta diversity in intertidal communities. This prediction stems from previous evidence that such canopies limit thermal variation across the substrate during low tides, an important consideration because spatial thermal changes influence spatial variability in species composition. To test our hypothesis, we compared two treatments (full canopy cover and canopy removal) created the year before on intertidal areas that were originally all fully covered by canopies. Separately for each treatment, we calculated beta diversity as the Bray-Curtis dissimilarity between nearby quadrats using species abundance data. Overall, fucoid macroalgal canopies significantly reduced beta diversity, showing that these foundation species can have opposing effects on alpha and beta diversity.


2021 ◽  
Author(s):  
David Randall ◽  
Asil Alsam ◽  
Julius Kieswich ◽  
Susan Joseph ◽  
Joseph Aduse-Opoku ◽  
...  

Abstract It is presently unclear why there is a high prevalence of periodontal disease (PD) in individuals living with chronic kidney disease (CKD). By employing three different models in rats and mice, we demonstrate that experimental uremia causes periodontal bone loss. Uremia alters the biochemical composition of saliva and induces progressive dysbiosis of the oral microbiota, with microbial samples from uremic animals displaying reduced overall bacterial growth, increased alpha diversity, reduced abundance of key components of the healthy oral microbiota such as Streptococcus and Rothia, and an increase in minor taxa including those from gram-negative phyla Proteobacteria and Bacteroidetes. We show that transfer of oral microbiota from uremic mice induces PD in germ-free animals, whilst co-housing with healthy animals ameliorates the PD phenotype in rats. Thus, we advocate that periodontal disease should be regarded as a bacterially mediated complication of chronic uremia.


Agriculture ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 113 ◽  
Author(s):  
Catello Pane ◽  
Roberto Sorrentino ◽  
Riccardo Scotti ◽  
Marcella Molisso ◽  
Antonio Di Matteo ◽  
...  

Green waste composts are obtained from agricultural production chains; their suppressive properties are increasingly being developed as a promising biological control option in the management of soil-borne phytopathogens. The wide variety of microbes harbored in the compost ecological niches may regulate suppressive functions through not yet fully known underlying mechanisms. This study investigates alpha- and beta-diversity of the compost microbial communities, as indicators of the biological features. Our green composts displayed a differential pattern of suppressiveness over the two assayed pathosystems. Fungal and bacterial densities, as well as catabolic and enzyme functionalities did not correlate with the compost control efficacy on cress disease. Differences in the suppressive potential of composts can be better predicted by the variations in the community levels of physiological profiles indicating that functional alpha-diversity is more predictive than that which is calculated on terminal restriction fragments length polymorphisms (T-RFLPs) targeting the 16S rRNA gene. However, beta-diversity described by nMDS analysis of the Bray–Curtis dissimilarity allowed for separating compost samples into distinct functionally meaningful clusters and indicated that suppressiveness could be regulated by selected groups of microorganisms as major deterministic mechanisms. This study contributes to individuating new suitable characterization procedures applicable to the suppressive green compost chain.


2019 ◽  
Vol 97 (7) ◽  
pp. 631-643 ◽  
Author(s):  
A.A. Nogueira ◽  
C. Bragagnolo ◽  
M.B. DaSilva ◽  
T.K. Martins ◽  
E.P. Lorenzo ◽  
...  

The integration of ecology and historical biogeography is fostering the investigation of diversity patterns. We studied alpha and beta diversity patterns of Brazilian Atlantic Forest harvestman (Arachnida: Opiliones) communities and related them to environmental and historical factors. Our data bank contains 508 species from 63 sites, encompassing almost the entire latitudinal range of Atlantic Forest. Alpha diversity was higher in coastal sites in the south and southeast regions and decreased in sites inland, as well as in sites in the coastal northeast region, especially in northern Bahia state. Alpha diversity was positively influenced by precipitation and altitudinal range, but the low number of species in northeastern coastal sites seems to be more related to the historical distribution of Neotropical harvestman lineages than to recent environmental factors. Geographic distance was the most influential factor for beta diversity. Compositional changes were also remarkably congruent with areas of endemism delimited for Atlantic Forest harvestmen. The percentage of protected areas for each area of endemism was very unbalanced, and Espírito Santo and Pernambuco states were the least protected areas. The turnover process observed in the compositional changes indicates that conservation strategies should include as many reserves as possible because every community presents a unique set of species.


2014 ◽  
Vol 25 (3-4) ◽  
pp. 53-68
Author(s):  
I. V. Goncharenko ◽  
H. M. Holyk

Cenotic diversity and leading ecological factors of its floristic differentiation were studied on an example of two areas – Kyiv parks "Nivki" and "Teremki". It is shown that in megalopolis the Galeobdoloni-Carpinetum impatientosum parviflorae subassociation is formed under anthropogenic pressure on the typical ecotope of near-Dnieper hornbeam oak forests on fresh gray-forest soils. The degree of anthropogenic transformation of cenofloras can be estimated by the number of species of Robinietea and Galio-Urticetea classes, as well as neophytes and cultivars. Phytoindication for hemeroby index may be also used in calculation. We propose the modified index of biotic dispersion (normalized by alpha-diversity) for the estimation of ecophytocenotic range (beta-diversity) of releves series. We found that alpha-diversity initially increases (due to the invasion of antropophytes) at low level of antropogenic pressure, then it decreases (due to the loss of aboriginal species) secondarily with increasing of human impact. Also we found that beta-diversity (differential diversity) decreases, increasing homogeneity of plant cover, under the influence of anthropogenic factor. Vegetation classification was completed by a new original method of cluster analysis, designated as DRSA («distance-ranked sorting assembling»). The classification quality is suggested to be validated on the "seriation" diagram, which is а distance matrix between objects with gradient filling. Dark diagonal blocks confirm clusters’ density (intracluster compactness), uncolored off-diagonal blocks are evidence in favor of clusters’ isolation (intercluster distinctness). In addition, distinction of clusters (syntaxa) in ordination area suggests their independence. For phytoindication we propose to include only species with more than 10% constancy. Furthermore, for the description of syntaxonomic amplitude we suggest to use 25%-75% interquartile scope instead of mean and standard deviation. It is shown that comparative analysis of syntaxa for each ecofactor is convenient to carry out by using violin (bulb) plots. A new approach to the phytoindication of syntaxa, designated as R-phytoindication, was proposed for our study. In this case, the ecofactor values, calculated for individual releves, are not taken into account, however, the composition of cenoflora with species constancies is used that helps us to minimize for phytoindication the influence of non-typical species. We suggested a syntaxon’s amplitude to be described by more robust statistics: for the optimum of amplitude (central tendency) – by a median (instead of arithmetic mean), and for the range of tolerance – by an interquartile scope (instead of standard deviation). We assesses amplitudes of syntaxa by phytoindication method for moisture (Hd), acidity (Rc), soil nitrogen content (Nt), wetting variability (vHd), light regime (Lc), salt regime (Sl). We revealed no significant differences on these ecofactors among ecotopes of our syntaxa, that proved the variant syntaxonomic rank for all syntaxa. We found that the core of species composition of our phytocenoses consists of plants with moderate requirements for moisture, soil nitrogen, light and salt regime. We prove that the leading factor of syntaxonomic differentiation is hidden anthropogenic, which is not subject to direct measurement. But we detect that hidden factor of "human pressure" was correlated with phytoindication parameters (variables) that can be measured "directly" by species composition of plant communities. The most correlated factors were ecofactors of soil nitrogen, wetting variability, light regime and hemeroby. The last one is the most indicative empirically for the assessment of "human impact". We establish that there is a concept of «hemeroby of phytocenosis» (tolerance to human impact), which can be calculated approximately as the mean or the median of hemeroby scores of individual species which are present in it.


Sign in / Sign up

Export Citation Format

Share Document