scholarly journals Luminal MCF-12A and myoepithelial-like Hs 578Bst cells form bilayered acini similar to human breast

2018 ◽  
Author(s):  
Anne Weber-Ouellette ◽  
Mélanie Busby ◽  
Isabelle Plante

2.3.1AbstractThe mammary gland is a complex organ, structured in a ramified epithelium supported by the stroma. The epithelium’s functional unit is the bilayered acinus, made of a layer of luminal cells surrounded by a layer of basal cells mainly composed of myoepithelial cells. The aim of this study was to develop a reproducible and manipulable three-dimensional co-culture model of the bilayered acinus in vitro to study the interactions between the two layers. Two different combinations of cell lines were co-cultured in Matrigel: SCp2 and SCg6 mice cells, or MCF-12A and Hs 578Bst human cell lines. Cell ratios and Matrigel concentration were optimized. The resulting acini were analysed by confocal microscopy using epithelial (E-cadherin) and myoepithelial (α-smooth muscle actin) markers. SCp2 and SCg6 cells formed distinct three-dimensional structures, whereas MCF-12A and Hs 578Bst cells formed some bilayered acini. This in vitro bilayered acini model will allow us to understand the role of interactions between luminal and myoepithelial cells in the normal breast development.

2020 ◽  
pp. 1-9
Author(s):  
Anna Karolina Zuk ◽  
Anna Karolina Zuk ◽  
Beata Burczynska ◽  
Dong Li ◽  
Lucy Ghali ◽  
...  

In this study three dimensional (3-D) in vitro models of normal breast and breast cancer tissues were developed to mimic closely the in vivo tissue microenvironment and therefore providing reliable models for in vitro studies as well as testing of novel cancer therapies. Normal and cancerous human breast cell lines were used to construct 3-D artificial tissues, where de-epidermalised dermis (DED) was used as a scaffold for both models. Morphological analyses were conducted using haematoxylin and eosin staining. Biomarkers including keratin 5 and 19 as well as α smooth muscle actin and mucin 1 were used to confirm and validate the reliability of the proposed models using immunohistochemical techniques. Findings suggest that the 3-D in vitro models described in this work can serve as functional models of both human normal and cancerous breast tissues. Multiple structures similar to ducts and lobules of human breast in vivo were observed in 3-D in vitro models by the use of H&E, some breast cancer colonies seen in the cancerous 3-D model were similar to the ducto-lobular structures observed in normal 3-D model of the breast but the former cells were more loosely connected, irregular and largely disorganized. The established 3-D in vitro model of normal breast showed the development of ducto-lobular structures composed of an inner cell layer which was stained positive with α mucin 1 antibody, a biomarker that is characteristic for luminal cells; and also an outer basal layer of cells that was stained positive for α smooth muscle actin, a biomarker of myoepithelial cells.. Keratin staining in 3-D in vitro models also resembled the pattern observed in vivo where keratin 5 was detected in both luminal and myoepithelial cells of normal breast model (NTERT cells), whereas keratin 19 was present in breast cancer model (C2321 cells). These 3-D models successfully recapitulate both normal and pathological tissue architecture of breast tissue and has the potential for various applications in the evaluation of breast cancer progression and treatment.


PLoS ONE ◽  
2012 ◽  
Vol 7 (4) ◽  
pp. e35008 ◽  
Author(s):  
Elhaseen Elamin ◽  
Daisy Jonkers ◽  
Kati Juuti-Uusitalo ◽  
Sven van IJzendoorn ◽  
Freddy Troost ◽  
...  

2003 ◽  
Vol 31 (3) ◽  
pp. 273-276 ◽  
Author(s):  
Hanna Tähti ◽  
Heidi Nevala ◽  
Tarja Toimela

The purpose of this paper is to review the current state of development of advanced in vitro blood–brain barrier (BBB) models. The BBB is a special capillary bed that separates the blood from the central nervous system (CNS) parenchyma. Astrocytes maintain the integrity of the BBB, and, without astrocytic contacts, isolated brain capillary endothelial cells in culture lose their barrier characteristics. Therefore, when developing in vitro BBB models, it is important to add astrocytic factors into the culture system. Recently, novel filter techniques and co-culture methods have made it possible to develop models which resemble the in vivo functions of the BBB in an effective way. With a BBB model, kinetic factors can be added into the in vitro batteries used for evaluating the neurotoxic potential of chemicals. The in vitro BBB model also represents a useful tool for the in vitro prediction of the BBB permeability of drugs, and offers the possibility to scan a large number of drugs for their potential to enter the CNS. Cultured monolayers of brain endothelial cell lines or selected epithelial cell lines, combined with astrocyte and neuron cultures, form a novel three-dimensional technique for the screening of neurotoxic compounds.


2020 ◽  
Vol 21 (15) ◽  
pp. 5335
Author(s):  
Hana Barosova ◽  
Bedia Begum Karakocak ◽  
Dedy Septiadi ◽  
Alke Petri-Fink ◽  
Vicki Stone ◽  
...  

In vitro three-dimensional (3D) lung cell models have been thoroughly investigated in recent years and provide a reliable tool to assess the hazard associated with nanomaterials (NMs) released into the air. In this study, a 3D lung co-culture model was optimized to assess the hazard potential of multiwalled carbon nanotubes (MWCNTs), which is known to provoke inflammation and fibrosis, critical adverse outcomes linked to acute and prolonged NM exposure. The lung co-cultures were exposed to MWCNTs at the air-liquid interface (ALI) using the VITROCELL® Cloud system while considering realistic occupational exposure doses. The co-culture model was composed of three human cell lines: alveolar epithelial cells (A549), fibroblasts (MRC-5), and macrophages (differentiated THP-1). The model was exposed to two types of MWCNTs (Mitsui-7 and Nanocyl) at different concentrations (2–10 μg/cm2) to assess the proinflammatory as well as the profibrotic responses after acute (24 h, one exposure) and prolonged (96 h, repeated exposures) exposure cycles. The results showed that acute or prolonged exposure to different concentrations of the tested MWCNTs did not induce cytotoxicity or apparent profibrotic response; however, suggested the onset of proinflammatory response.


2019 ◽  
Vol 317 (3) ◽  
pp. C405-C419 ◽  
Author(s):  
Mohammad Almeqdadi ◽  
Miyeko D. Mana ◽  
Jatin Roper ◽  
Ömer H. Yilmaz

In vitro, cell cultures are essential tools in the study of intestinal function and disease. For the past few decades, monolayer cellular cultures, such as cancer cell lines or immortalized cell lines, have been widely applied in gastrointestinal research. Recently, the development of three-dimensional cultures known as organoids has permitted the growth of normal crypt-villus units that recapitulate many aspects of intestinal physiology. Organoid culturing has also been applied to study gastrointestinal diseases, intestinal-microbe interactions, and colorectal cancer. These models are amenable to CRISPR gene editing and drug treatments, including high-throughput small-molecule testing. Three-dimensional intestinal cultures have been transplanted into mice to develop versatile in vivo models of intestinal disease, particularly cancer. Limitations of currently available organoid models include cost and challenges in modeling nonepithelial intestinal cells, such as immune cells and the microbiota. Here, we describe the development of organoid models of intestinal biology and the applications of organoids for study of the pathophysiology of intestinal diseases and cancer.


2019 ◽  
Vol 15 ◽  
pp. 96-105 ◽  
Author(s):  
Rainer Kufka ◽  
Robert Rennert ◽  
Goran N Kaluđerović ◽  
Lutz Weber ◽  
Wolfgang Richter ◽  
...  

Tubugi-1 is a small cytotoxic peptide with picomolar cytotoxicity. To improve its cancer cell targeting, it was conjugated using a universal, modular disulfide derivative. This allowed conjugation to a neuropeptide-Y (NPY)-inspired peptide [K4(C-βA-),F7,L17,P34]-hNPY, acting as NPY Y1 receptor (hY1R)-targeting peptide, to form a tubugi-1–SS–NPY disulfide-linked conjugate. The cytotoxic impacts of the novel tubugi-1–NPY peptide–toxin conjugate, as well as of free tubugi-1, and tubugi-1 bearing the thiol spacer (liberated from tubugi-1–NPY conjugate), and native tubulysin A as reference were investigated by in vitro cell viability and proliferation screenings. The tumor cell lines HT-29, Colo320 (both colon cancer), PC-3 (prostate cancer), and in conjunction with RT-qPCR analyses of the hY1R expression, the cell lines SK-N-MC (Ewing`s sarcoma), MDA-MB-468, MDA-MB-231 (both breast cancer) and 184B5 (normal breast; chemically transformed) were investigated. As hoped, the toxicity of tubugi-1 was masked, with IC50 values decreased by ca. 1,000-fold compared to the free toxin. Due to intracellular linker cleavage, the cytotoxic potency of the liberated tubugi-1 that, however, still bears the thiol spacer (tubugi-1-SH) was restored and up to 10-fold higher compared to the entire peptide–toxin conjugate. The conjugate shows toxic selectivity to tumor cell lines overexpressing the hY1R receptor subtype like, e.g., the hard to treat triple-negative breast cancer MDA-MB-468 cells.


2016 ◽  
Vol 310 (5) ◽  
pp. C348-C356 ◽  
Author(s):  
Magdalena Arévalo Turrubiarte ◽  
Marie-Hélène Perruchot ◽  
Laurence Finot ◽  
Frédérique Mayeur ◽  
Frédéric Dessauge

Immortalized bovine mammary epithelial cells (BME-UV1) and immortalized bovine mammary alveolar cells (MAC-T) have been extensively used as in vitro cell models to understand milk production in dairy cows. Precise knowledge about their phenotype and performance remains, however, unknown. This study aims to characterize MAC-T and BME-UV1 profiles when cultured in two-dimensional adherent, three-dimensional adherent (Matrigel), and three-dimensional no adherent [ultralow attachment (ULA)] supports. MAC-T and BME-UV1 were compared according to their proliferation capacities and to specific cell surface markers CD24, CD326 [epithelial cell adhesion molecule (EpCAM)], CD10, and integrin CD49f (α-6). Cytokeratin (CK14 and CK19), signal transducer and activator of transcription 5, and other proteins (occludin and cadherin-1) were analyzed. BME-UV1 in ULA support expressed higher CD49f marker. A different intensity of CD49 staining allowed the discrimination between the two cell lines in adherent condition. CD10, EpCAM, and CK19 expressions show that BME-UV1 cells have luminal capacity, while MAC-T has a myoepithelial profile with a high expression of CK14. BME-UV1 cells possess a closer committed progenitor profile due to their higher expression in aldehyde dehydrogenase and EpCAM. We observed that BME-UV1 cells have a better capacity to form spherical structures, mammospheres, in Matrigel than MAC-T, which was confirmed by the higher mammosphere area. In the ULA condition, BME-UV1 proliferated over the 6 days of culture. Taken together, our results clearly confirm the BME-UV1 luminal profile and MAC-T ductal/myoepithelial-like phenotype.


2005 ◽  
Vol 171 (4) ◽  
pp. 663-673 ◽  
Author(s):  
Wa Xian ◽  
Kathryn L. Schwertfeger ◽  
Tracy Vargo-Gogola ◽  
Jeffrey M. Rosen

Members of the fibroblast growth factor (FGF) family and the FGF receptors (FGFRs) have been implicated in mediating various aspects of mammary gland development and transformation. To elucidate the molecular mechanisms of FGFR1 action in a context that mimics polarized epithelial cells, we have developed an in vitro three-dimensional HC11 mouse mammary epithelial cell culture model expressing a drug-inducible FGFR1 (iFGFR1). Using this conditional model, iFGFR1 activation in these growth-arrested and polarized mammary acini initially led to reinitiation of cell proliferation, increased survival of luminal cells, and loss of cell polarity, resulting in the disruption of acinar structures characterized by the absence of an empty lumen. iFGFR1 activation also resulted in a gain of invasive properties and the induction of matrix metalloproteinase 3 (MMP-3), causing the cleavage of E-cadherin and increased expression of smooth muscle actin and vimentin. The addition of a pan MMP inhibitor abolished these phenotypes but did not prevent the effects of iFGFR1 on cell proliferation or survival.


Nature Aging ◽  
2021 ◽  
Vol 1 (9) ◽  
pp. 838-849 ◽  
Author(s):  
Sundus F. Shalabi ◽  
Masaru Miyano ◽  
Rosalyn W. Sayaman ◽  
Jennifer C. Lopez ◽  
Tiina A. Jokela ◽  
...  

AbstractDuring aging in the human mammary gland, luminal epithelial cells lose lineage fidelity by expressing markers normally expressed in myoepithelial cells. We hypothesize that loss of lineage fidelity is a general manifestation of epithelia that are susceptible to cancer initiation. In the present study, we show that histologically normal breast tissue from younger women who are susceptible to breast cancer, as a result of harboring a germline mutation in BRCA1, BRCA2 or PALB2 genes, exhibits hallmarks of accelerated aging. These include proportionately increased luminal epithelial cells that acquired myoepithelial markers, decreased proportions of myoepithelial cells and a basal differentiation bias or failure of differentiation of cKit+ progenitors. High-risk luminal and myoepithelial cells are transcriptionally enriched for genes of the opposite lineage, inflammatory- and cancer-related pathways. We have identified breast-aging hallmarks that reflect a convergent biology of cancer susceptibility, regardless of the specific underlying genetic or age-dependent risk or the associated breast cancer subtype.


2020 ◽  
Vol 7 (3) ◽  
pp. 3667-3677
Author(s):  
Nhan Lu-Chinh Phan ◽  
Khuong Duy Pham ◽  
Mai Thi-Thanh Nguyen ◽  
Ngoc Kim Phan ◽  
Kiet Dinh Truong ◽  
...  

Introduction: The monolayer cell culture model is a popular model for screening anti-tumor activity of plant extracts. However, almost the extracts selected for screening in this model have failed in subsequent animal models. Therefore, there is only about 5 % of candidates from the original thousands of drugs that are screened which ultimately reach clinical trial. This study aimed to compare the differences in anti-tumor activity of 34 plant extracts against breast cancer cells in 2 models of monolayer cell culture (2D) and in three-dimensional (3D) cell culture. Methods: Four breast cancer cell lines (MCF-7, CD44+CD24- MCF-7, VN9, and CD44+CD24- VN9) were used to generate the 2D and 3D models (the 3D model was developed by culturing breast cancer cells in matrigel). The extracts were got from the plant extract library that prepared in the previous study. The anti-tumor activity was evaluated via half inhibitory concentrations( IC50 values). Results: Of the 34 extracts, E12, E7, E5 and E6 of them had an effect on MCF-7, CD44+CD24- MCF-7, VN9 and CD44+CD24- VN9 cells, respectively. The results indicated 10 potentially strong candidates for future drug development targeting hypoxic areas in breast cancer. Conclusion: The 3D culture model exhibited higher resistance to extracts than the 2D culture model. The CD44+CD24- cell population of both VN9 and MCF-7 cell lines showed higher drug resistance than the original cell lines (VN9 and MCF-7).  


Sign in / Sign up

Export Citation Format

Share Document