scholarly journals Identification of 12 genetic loci associated with human healthspan

2018 ◽  
Author(s):  
Aleksandr Zenin ◽  
Yakov Tsepilov ◽  
Sodbo Sharapov ◽  
Evgeny Getmantsev ◽  
L. I. Menshikov ◽  
...  

The mounting challenge of preserving the quality of life in an aging population directs the focus of longevity science to the regulatory pathways controlling healthspan. To understand the nature of the relationship between the healthspan and lifespan and uncover the genetic architecture of the two phenotypes, we studied the incidence of major age-related diseases in the UK Biobank (UKB) cohort. We observed that the incidence rates of major chronic diseases increase exponentially. The risk of disease acquisition doubled approximately every eight years, i.e., at a rate compatible with the doubling time of the Gompertz mortality law. Assuming that aging is the single underlying factor behind the morbidity rates dynamics, we built a proportional hazards model to predict the risks of the diseases and therefore the age corresponding to the end of healthspan of an individual depending on their age, gender, and the genetic background. We suggested a computationally efficient procedure for the determination of the effect size and statistical significance of individual gene variants associations with healthspan in a form suitable for a Genome-Wide Association Studies (GWAS). Using the UKB sub-population of 300,447 genetically Caucasian, British individuals as a discovery cohort, we identified 12 loci associated with healthspan and reaching the whole-genome level of significance. We observed strong (|ρg| > 0.3) genetic correlations between healthspan and the incidence of specific age-related disease present in our healthspan definition (with the notable exception of dementia). Other examples included all-cause mortality (as derived from parental survival, with ρg = −0.76), life-history traits (metrics of obesity, age at first birth), levels of different metabolites (lipids, amino acids, glycemic traits), and psychological traits (smoking behaviour, cognitive performance, depressive symptoms, insomnia). We conclude by noting that the healthspan phenotype, suggested and characterized here, offers a promising new way to investigate human longevity by exploiting the data from genetic and clinical data on living individuals.

Author(s):  
Niccolo’ Tesi ◽  
Sven J van der Lee ◽  
Marc Hulsman ◽  
Iris E Jansen ◽  
Najada Stringa ◽  
...  

Abstract Studying the genome of centenarians may give insights into the molecular mechanisms underlying extreme human longevity and the escape of age-related diseases. Here, we set out to construct polygenic risk scores (PRSs) for longevity and to investigate the functions of longevity-associated variants. Using a cohort of centenarians with maintained cognitive health (N = 343), a population-matched cohort of older adults from 5 cohorts (N = 2905), and summary statistics data from genome-wide association studies on parental longevity, we constructed a PRS including 330 variants that significantly discriminated between centenarians and older adults. This PRS was also associated with longer survival in an independent sample of younger individuals (p = .02), leading up to a 4-year difference in survival based on common genetic factors only. We show that this PRS was, in part, able to compensate for the deleterious effect of the APOE-ε4 allele. Using an integrative framework, we annotated the 330 variants included in this PRS by the genes they associate with. We find that they are enriched with genes associated with cellular differentiation, developmental processes, and cellular response to stress. Together, our results indicate that an extended human life span is, in part, the result of a constellation of variants each exerting small advantageous effects on aging-related biological mechanisms that maintain overall health and decrease the risk of age-related diseases.


2017 ◽  
Author(s):  
Max Lam ◽  
Joey W. Trampush ◽  
Jin Yu ◽  
Emma Knowles ◽  
Gail Davies ◽  
...  

AbstractNeurocognitive ability is a fundamental readout of brain function, and cognitive deficits are a critical component of neuropsychiatric disorders, yet neurocognition is poorly understood at the molecular level. In the present report, we present the largest genome-wide association studies (GWAS) of cognitive ability to date (N=107,207), and further enhance signal by combining results with a large-scale GWAS of educational attainment. We identified 70 independent genomic loci associated with cognitive ability, 34 of which were novel. A total of 350 genes were implicated, and this list showed significant enrichment for genes associated with Mendelian disorders with an intellectual disability phenotype. Competitive pathway analysis of gene results implicated the biological process of neurogenesis, as well as the gene targets of two pharmacologic agents: cinnarizine, a T-type calcium channel blocker; and LY97241, a potassium channel inhibitor. Transcriptome-wide analysis revealed that the implicated genes were strongly expressed in neurons, but not astrocytes or oligodendrocytes, and were more strongly associated with fetal brain expression than adult brain expression. Several tissue-specific gene expression relationships to cognitive ability were observed (for example, DAG1 levels in the hippocampus). Finally, we report novel genetic correlations between cognitive ability and disparate phenotypes such as maternal age at first birth and number of children, as well as several autoimmune disorders.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hill F. Ip ◽  
Camiel M. van der Laan ◽  
Eva M. L. Krapohl ◽  
Isabell Brikell ◽  
Cristina Sánchez-Mora ◽  
...  

AbstractChildhood aggressive behavior (AGG) has a substantial heritability of around 50%. Here we present a genome-wide association meta-analysis (GWAMA) of childhood AGG, in which all phenotype measures across childhood ages from multiple assessors were included. We analyzed phenotype assessments for a total of 328 935 observations from 87 485 children aged between 1.5 and 18 years, while accounting for sample overlap. We also meta-analyzed within subsets of the data, i.e., within rater, instrument and age. SNP-heritability for the overall meta-analysis (AGGoverall) was 3.31% (SE = 0.0038). We found no genome-wide significant SNPs for AGGoverall. The gene-based analysis returned three significant genes: ST3GAL3 (P = 1.6E–06), PCDH7 (P = 2.0E–06), and IPO13 (P = 2.5E–06). All three genes have previously been associated with educational traits. Polygenic scores based on our GWAMA significantly predicted aggression in a holdout sample of children (variance explained = 0.44%) and in retrospectively assessed childhood aggression (variance explained = 0.20%). Genetic correlations (rg) among rater-specific assessment of AGG ranged from rg = 0.46 between self- and teacher-assessment to rg = 0.81 between mother- and teacher-assessment. We obtained moderate-to-strong rgs with selected phenotypes from multiple domains, but hardly with any of the classical biomarkers thought to be associated with AGG. Significant genetic correlations were observed with most psychiatric and psychological traits (range $$\left| {r_g} \right|$$ r g : 0.19–1.00), except for obsessive-compulsive disorder. Aggression had a negative genetic correlation (rg = ~−0.5) with cognitive traits and age at first birth. Aggression was strongly genetically correlated with smoking phenotypes (range $$\left| {r_g} \right|$$ r g : 0.46–0.60). The genetic correlations between aggression and psychiatric disorders were weaker for teacher-reported AGG than for mother- and self-reported AGG. The current GWAMA of childhood aggression provides a powerful tool to interrogate the rater-specific genetic etiology of AGG.


2021 ◽  
Vol 12 ◽  
Author(s):  
Seung-Soo Kim ◽  
Adam D. Hudgins ◽  
Brenda Gonzalez ◽  
Sofiya Milman ◽  
Nir Barzilai ◽  
...  

The rich data from the genome-wide association studies (GWAS) and phenome-wide association studies (PheWAS) offer an unprecedented opportunity to identify the biological underpinnings of age-related disease (ARD) risk and multimorbidity. Surprisingly, however, a comprehensive list of ARDs remains unavailable due to the lack of a clear definition and selection criteria. We developed a method to identify ARDs and to provide a compendium of ARDs for genetic association studies. Querying 1,358 electronic medical record-derived traits, we first defined ARDs and age-related traits (ARTs) based on their prevalence profiles, requiring a unimodal distribution that shows an increasing prevalence after the age of 40 years, and which reaches a maximum peak at 60 years of age or later. As a result, we identified a list of 463 ARDs and ARTs in the GWAS and PheWAS catalogs. We next translated the ARDs and ARTs to their respective 276 Medical Subject Headings diseases and 45 anatomy terms. The most abundant disease categories are neoplasms (48 terms), cardiovascular diseases (44 terms), and nervous system diseases (27 terms). Employing data from a human symptoms-disease network, we found 6 symptom-shared disease groups, representing cancers, heart diseases, brain diseases, joint diseases, eye diseases, and mixed diseases. Lastly, by overlaying our ARD and ART list with genetic correlation data from the UK Biobank, we found 54 phenotypes in 2 clusters with high genetic correlations. Our compendium of ARD and ART is a highly useful resource, with broad applicability for studies of the genetics of aging, ARD, and multimorbidity.


2020 ◽  
Author(s):  
AUGUSTO Rojas-Martinez ◽  
Valentina Colistro ◽  
Raquel Cruz ◽  
Clara Ruiz ◽  
Inés Quintela ◽  
...  

Abstract Background: Genome-wide association studies (GWAS) for colorectal cancer (CRC) have detected high-risk genetic variants associated with CRC in several ethnic groups, but Latin American communities are still underrepresented. The aim was to identify variants related to CRC in an admixed Latin American population. Methods: The study was performed in 831 cases and 881 controls from Mexico, who were genotyped for 1,006,703 autosomal SNPs. Logistic regression was carried out including covariants, such as sex, age and genetic ancestry. Lastly, we performed a sequence-kernel association test (SKAT) to consider the joint effect of several SNPs lying in genes.Results: Eight chromosomal regions reached genome-wide significance level ( p < 5×10 -8 ): 1p36.22, 1p31.1, 1q42.13, 6p22, 7p14.1, 12q24.32, 16q12.2 and 21q22.2 and 63 variants reached borderline statistical significance ( p < 1×10 − 6 ). SKAT analysis detected 13 loci associated with CRC, none of them previously associated with CRC. Conclusions: We found 8 SNPs and 13 loci associated with CRC. These signals may contribute to enrich the panoply of genes involved with CRC. Further analyses remain to be done to validate the associations in other Latin American populations. This study highlights the importance of conducting GWAS in poorly explored admixed populations.


2019 ◽  
Author(s):  
Jude Gibson ◽  
Tom C. Russ ◽  
Toni-Kim Clarke ◽  
David M. Howard ◽  
Kathryn L. Evans ◽  
...  

Abstract‘Epigenetic age acceleration’ is a valuable biomarker of ageing, predictive of morbidity and mortality, but for which the underlying biological mechanisms are not well established. Two commonly used measures, derived from DNA methylation, are Horvath-based (Horvath-EAA) and Hannum-based (Hannum-EAA) epigenetic age acceleration. We conducted genome-wide association studies of Horvath-EAA and Hannum-EAA in 13,493 unrelated individuals of European ancestry, to elucidate genetic determinants of differential epigenetic ageing. We identified ten independent SNPs associated with Horvath-EAA, five of which are novel. We also report 21 Horvath-EAA-associated genes including several involved in metabolism (NHLRC,TPMT) and immune system pathways (TRIM59,EDARADD). GWAS of Hannum-EAA identified one associated variant (rs1005277), and implicated 12 genes including several involved in innate immune system pathways (UBE2D3,MANBA,TRIM46), with metabolic functions (UBE2D3,MANBA), or linked to lifespan regulation (CISD2). Both measures had nominal inverse genetic correlations with father’s age at death, a rough proxy for lifespan. Nominally significant genetic correlations between Hannum-EAA and lifestyle factors including smoking behaviours and education support the hypothesis that Hannum-based epigenetic ageing is sensitive to variations in environment, whereas Horvath-EAA is a more stable cellular ageing process. We identified novel SNPs and genes associated with epigenetic age acceleration, and highlighted differences in the genetic architecture of Horvath-based and Hannum-based epigenetic ageing measures. Understanding the biological mechanisms underlying individual differences in the rate of epigenetic ageing could help explain different trajectories of age-related decline.Author SummaryDNA methylation, a type of epigenetic process, is known to vary with age. Methylation levels at specific sites across the genome can be combined to form estimates of age known as ‘epigenetic age’. The difference between epigenetic age and chronological age is referred to as ‘epigenetic age acceleration’, with positive values indicating that a person is biologically older than their years. Understanding why some people seem to age faster than others could shed light on the biological processes behind age-related decline; however, the mechanisms underlying differential rates of epigenetic ageing are largely unknown. Here, we investigate genetic determinants of two commonly used epigenetic age acceleration measures, based on the Horvath and Hannum epigenetic clocks. We report novel genetic variants and genes associated with epigenetic age acceleration, and highlight differences in the genetic factors influencing these two measures. We identify ten genetic variants and 21 genes associated with Horvath-based epigenetic age acceleration, and one variant and 12 genes associated with the Hannum-based measure. There were no genome-wide significant variants or genes in common between the Horvath-based and Hannum-based measures, supporting the hypothesis that they represent different aspects of ageing. Our results suggest a partial genetic basis underlying some previously reported phenotypic associations.


2020 ◽  
Vol 21 (6) ◽  
pp. 466-470
Author(s):  
Emine Kandemis ◽  
Gulten Tuncel ◽  
Ozen Asut ◽  
Sehime G. Temel ◽  
Mahmut C. Ergoren

Background: The use of psychoactive substances is one of the most dangerous social problems worldwide. Nicotine dependence results from the interaction between neurobiological, environmental and genetic factors. Serotonin is a neurotransmitter that has a wide range of central nervous system activities. The serotonin transporter gene has been previously linked to psychological traits. Objective: A variable number of tandem repeats within the serotonin transporter-linked polymorphic gene region are believed to alter the transcriptional efficiency of the 5-HTT gene. Therefore, we aimed to investigate the association between this polymorphic site and smoking behavior in the Turkish Cypriot population. Methods: A total of 259 (100 smokers, 100 non-smokers and 59 ex-smokers) Turkish Cypriots were included in this population-based cross-sectional study. Genomic DNA was extracted from peripheral blood samples and the 5-HTTVNTR2 polymorphisms were determined by the PCR-RFLP. Results: The allelic frequency and genotype distribution results of this study showed a strong association (P<0.0001) between smokers and non-smokers. No statistical significance was found between non-smokers and ex-smokers. Conclusion: This is the first genetic epidemiology study to investigate the allelic frequencies of 5-HTTVNTR2 polymorphisms associated with smoking behavior in the Turkish Cypriot population. Based on the results of this study, genome-wide association studies should be designed for preventive medicine in this population.


2011 ◽  
Vol 3 (1) ◽  
pp. 1 ◽  
Author(s):  
Emily R. Atkins ◽  
Peter K. Panegyres

Alzheimer’s disease (AD) is the largest cause of dementia, affecting 35.6 million people in 2010. Amyloid precursor protein, presenilin 1 and presenilin 2 mutations are known to cause familial early-onset AD, whereas apolipoprotein E (APOE) ε4 is a susceptibility gene for late-onset AD. The genes for phosphatidylinositol- binding clathrin assembly protein, clusterin and complement receptor 1 have recently been described by genome-wide association studies as potential risk factors for lateonset AD. Also, a genome association study using single neucleotide polymorphisms has identified an association of neuronal sortilin related receptor and late-onset AD. Gene testing, and also predictive gene testing, may be of benefit in suspected familial early-onset AD however it adds little to the diagnosis of lateonset AD and does not alter the treatment. We do not recommend APOE ε4 genotyping.


Author(s):  
Kyung-Shin Lee ◽  
Yoon-Jung Choi ◽  
Jin-Woo Cho ◽  
Sung-Ji Moon ◽  
Youn-Hee Lim ◽  
...  

Epigenetics is known to be involved in regulatory pathways through which greenness exposure influences child development and health. We aimed to investigate the associations between residential surrounding greenness and DNA methylation changes in children, and further assessed the association between DNA methylation and children’s intelligence quotient (IQ) in a prospective cohort study. We identified cytosine-guanine dinucleotide sites (CpGs) associated with cognitive abilities from epigenome- and genome-wide association studies through a systematic literature review for candidate gene analysis. We estimated the residential surrounding greenness at age 2 using a geographic information system. DNA methylation was analyzed from whole blood using the HumanMethylationEPIC array in 59 children at age 2. We analyzed the association between greenness exposure and DNA methylation at age 2 at the selected CpGs using multivariable linear regression. We further investigated the relationship between DNA methylation and children’s IQ. We identified 8743 CpGs associated with cognitive ability based on the literature review. Among these CpGs, we found that 25 CpGs were significantly associated with greenness exposure at age 2, including cg26269038 (Bonferroni-corrected p ≤ 0.05) located in the body of SLC6A3, which encodes a dopamine transporter. DNA methylation at cg26269038 at age 2 was significantly associated with children’s performance IQ at age 6. Exposure to surrounding greenness was associated with cognitive ability-related DNA methylation changes, which was also associated with children’s IQ. Further studies are warranted to clarify the epigenetic pathways linking greenness exposure and neurocognitive function.


2021 ◽  
pp. 1-11
Author(s):  
Valentina Escott-Price ◽  
Karl Michael Schmidt

<b><i>Background:</i></b> Genome-wide association studies (GWAS) were successful in identifying SNPs showing association with disease, but their individual effect sizes are small and require large sample sizes to achieve statistical significance. Methods of post-GWAS analysis, including gene-based, gene-set and polygenic risk scores, combine the SNP effect sizes in an attempt to boost the power of the analyses. To avoid giving undue weight to SNPs in linkage disequilibrium (LD), the LD needs to be taken into account in these analyses. <b><i>Objectives:</i></b> We review methods that attempt to adjust the effect sizes (β<i>-</i>coefficients) of summary statistics, instead of simple LD pruning. <b><i>Methods:</i></b> We subject LD adjustment approaches to a mathematical analysis, recognising Tikhonov regularisation as a framework for comparison. <b><i>Results:</i></b> Observing the similarity of the processes involved with the more straightforward Tikhonov-regularised ordinary least squares estimate for multivariate regression coefficients, we note that current methods based on a Bayesian model for the effect sizes effectively provide an implicit choice of the regularisation parameter, which is convenient, but at the price of reduced transparency and, especially in smaller LD blocks, a risk of incomplete LD correction. <b><i>Conclusions:</i></b> There is no simple answer to the question which method is best, but where interpretability of the LD adjustment is essential, as in research aiming at identifying the genomic aetiology of disorders, our study suggests that a more direct choice of mild regularisation in the correction of effect sizes may be preferable.


Sign in / Sign up

Export Citation Format

Share Document