scholarly journals Retinoblastoma 1 (RB1) modulates the proliferation of chicken preadipocytes

2018 ◽  
Author(s):  
Yu-Xiang Wang ◽  
Hai-Xia Wang ◽  
Wei Na ◽  
Fei-Yue Qin ◽  
Zhi-Wei Zhang ◽  
...  

AbstractRetinoblastoma 1 (RB1) has been extensively studied in mammalian species, but its function in avian species is unclear. The objective of this study was to reveal the role of chicken RB1 (Gallus gallus RB1, gRB1) in the proliferation of preadipocytes. In the current study, quantitative real-time PCR analysis showed that the expression levels of gRB1 transiently increased during the proliferation of preadipocytes. The MTT assay showed that gRB1 overexpression suppressed preadipocyte proliferation, and gRB1 interference promoted preadipocyte proliferation. Additionally, cell-cycle analysis indicated that gRB1 may play a crucial role in the G1/S transition. Consistently, gene expression analysis showed that gRB1 knockdown promoted marker of proliferation Ki-67 (MKi67) expression at 96 h (P < 0.05), and that overexpression of gRB1 reduced MKi67 expression at 72 h (P < 0.05). Together, our study demonstrated that gRB1 inhibited preadipocyte proliferation at least in part by inhibiting the G1 to S phase transition.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2312-2312
Author(s):  
Glenda J. McGonigle ◽  
Damian P.J. Finnegan ◽  
Mary Frances McMullin ◽  
Terence R.J. Lappin ◽  
Alexander Thompson

Abstract Molecular classification of acute myeloid leukemia (AML) has identified several candidate genes that could potentially define prognosis and response to therapy. One such candidate, identified from microarray studies, is the Class I homeobox gene HOXA9. The HOX gene network encodes master regulators of developmental processes including hemopoiesis. To quantify the contribution of this network of genes in AML, we carried out specific RQ-PCR analysis on twenty-four de novo patient samples using a subset of genes (12 HOX and MEIS1) selected on the basis of their recently reported expression in AML. HOXA6 was ranked, as the most highly expressed gene (range 1 x 103 – 2 x 107 copies per 50 ng RNA), substantially higher than HOXA9 (see Table). Further analysis identified high expression of HOXA6 in both human myeloid cell lines and CD34+ enriched primary progenitors. Parallel studies with murine progenitors (c-Kit+, Lin−) and cell lines also showed a preponderance of Hoxa6 expression over other family members including Hoxa9 and Hoxb4. Several hemopoietic cell lines, namely Ba/F3, EML, FDCP-Mix A4 and 32Dcl3 were subsequently used to investigate Hoxa6 regulation following differentiation or growth factor stimuli. Hoxa6 expression decreased with cell differentiation and growth factor depletion/replenishment studies indicated a cell-cycle component for Hoxa6 regulation. Direct evaluation of cell-cycle status, using Hoechst 33342 staining and cell sorting, identified peak expression of Hoxa6 during S-phase. Gene deletion studies involving Hox tend to result in either a moderate or no phenotype, presumably due to intrinsic compensatory mechanisms. We therefore overexpressed HOXA6 in the Ba/F3 cell line to gain functional insights. Ba/F3-A6 cells were compared to mock-transfected and vector controls on the basis of proliferation, maturation, cell-cycle status, growth factor-dependence and apoptosis. The Ba/F3-A6 cells displayed a growth advantage over normal cells in the presence of IL-3 and maturation was not impaired. Cell-cycle analysis showed a reduction in the number of cells in both G2M and S-phase, associated with accumulation in the pre G1-phase, indicative of increased apoptosis. IL-3 depletion studies of Ba/F3-A6 cells indicated substantial factor-independent growth compared to controls, implying oncogenic potential for HOXA6. In support of this, a recent report (Mamo et al, Blood. 2006 Jul 15;108(2):622–9) indicated Hoxa6 as a potential collaborator in a Meis1-induced model of AML. Taken together these findings identify Hoxa6 as a novel candidate gene in AML with the capacity to alter growth and survival of hemopoietic cells. Gene Expression Ranking of HOX and MEIS1 in AML. GENE EXPRESSION RANGE MEAN RANK S.D. OVERALL RANK Expression values (copies per 50 ng RNA) compiled from primary AML patient samples (n=24) or * (n=12). S.D = standard deviation. HOXA6 1.2 x 103 – 1.7 x 107 2.2 1.6 1 HOXB3 9.3 x 101 – 8.4 x 106 3.2 2.5 2 HOXB2* 7.9 x 102 – 5.4 x 106 3.4 2.0 3 HOXA9 4.0 x 101 – 5.3 x 106 5.3 2.4 4 MEIS1 0.6 x 101 – 8.4 x 106 5.4 2.7 5 HOXA10* 2.4 x 102 – 1.7 x 105 5.5 3.2 6 HOXB4 1.5 x 102 – 7.8 x 105 5.5 3.2 7 HOXA7* 5.3 x 103 – 1.8 x 106 5.7 1.7 8 HOXB6 2.3 x 101 – 8.8 x 105 6.6 2.8 9 HOXA4 4.1 x 101 – 1.1 x 105 7.9 3.4 10 HOXA5* 3.4 x 101 – 4.3 x 104 9.3 2.8 11 HOXC6 1.0 x 101 – 3.2 x 103 9.7 2.3 12 HOXA11* 4.0 x 101 – 6.1 x 103 10.6 2.2 13


2005 ◽  
Vol 25 (14) ◽  
pp. 6140-6153 ◽  
Author(s):  
Angela Miele ◽  
Corey D. Braastad ◽  
William F. Holmes ◽  
Partha Mitra ◽  
Ricardo Medina ◽  
...  

ABSTRACT Genome replication in eukaryotic cells necessitates the stringent coupling of histone biosynthesis with the onset of DNA replication at the G1/S phase transition. A fundamental question is the mechanism that links the restriction (R) point late in G1 with histone gene expression at the onset of S phase. Here we demonstrate that HiNF-P, a transcriptional regulator of replication-dependent histone H4 genes, interacts directly with p220NPAT, a substrate of cyclin E/CDK2, to coactivate histone genes during S phase. HiNF-P and p220 are targeted to, and colocalize at, subnuclear foci (Cajal bodies) in a cell cycle-dependent manner. Genetic or biochemical disruption of the HiNF-P/p220 interaction compromises histone H4 gene activation at the G1/S phase transition and impedes cell cycle progression. Our results show that HiNF-P and p220 form a critical regulatory module that directly links histone H4 gene expression at the G1/S phase transition to the cyclin E/CDK2 signaling pathway at the R point.


2019 ◽  
Vol 105 (3) ◽  
pp. 839-853
Author(s):  
Aglaia Kyrilli ◽  
David Gacquer ◽  
Vincent Detours ◽  
Anne Lefort ◽  
Frédéric Libert ◽  
...  

Abstract Background The early molecular events in human thyrocytes after 131I exposure have not yet been unravelled. Therefore, we investigated the role of TSH in the 131I-induced DNA damage response and gene expression in primary cultured human thyrocytes. Methods Following exposure of thyrocytes, in the presence or absence of TSH, to 131I (β radiation), γ radiation (3 Gy), and hydrogen peroxide (H2O2), we assessed DNA damage, proliferation, and cell-cycle status. We conducted RNA sequencing to profile gene expression after each type of exposure and evaluated the influence of TSH on each transcriptomic response. Results Overall, the thyrocyte responses following exposure to β or γ radiation and to H2O2 were similar. However, TSH increased 131I-induced DNA damage, an effect partially diminished after iodide uptake inhibition. Specifically, TSH increased the number of DNA double-strand breaks in nonexposed thyrocytes and thus predisposed them to greater damage following 131I exposure. This effect most likely occurred via Gα q cascade and a rise in intracellular reactive oxygen species (ROS) levels. β and γ radiation prolonged thyroid cell-cycle arrest to a similar extent without sign of apoptosis. The gene expression profiles of thyrocytes exposed to β/γ radiation or H2O2 were overlapping. Modulations in genes involved in inflammatory response, apoptosis, and proliferation were observed. TSH increased the number and intensity of modulation of differentially expressed genes after 131I exposure. Conclusions TSH specifically increased 131I-induced DNA damage probably via a rise in ROS levels and produced a more prominent transcriptomic response after exposure to 131I.


1987 ◽  
Vol 7 (10) ◽  
pp. 3554-3560
Author(s):  
F Cavalieri ◽  
M Goldfarb

Induction of quiescent BALB/c 3T3 murine fibroblasts by platelet-derived growth factor (PDGF) or fibroblast growth factor (FGFs) is accompanied by induction of c-myc gene expression. To study the role of c-myc in cell growth, we transfected BALB/c 3T3 cells with a plasmid construct containing a glucocorticoid-inducible c-myc gene. When these transfected cells were growth arrested in PDGF-FGF-freedefined medium, glucocorticoid treatment induced S-phase DNA synthesis. This induction of DNA synthesis was inefficient, and cell proliferation was not evident, suggesting that growth factors act through stimulation of c-myc expression together with other intracellular events.


Epigenomics ◽  
2021 ◽  
Author(s):  
Beatriz Garcia-Ruiz ◽  
Manuel Castro de Moura ◽  
Gerard Muntané ◽  
Lourdes Martorell ◽  
Elena Bosch ◽  
...  

Aim: To investigate DDR1 methylation in the brains of bipolar disorder (BD) patients and its association with DDR1 mRNA levels and comethylation with myelin genes. Materials & methods: Genome-wide profiling of DNA methylation (Infinium MethylationEPIC BeadChip) corrected for glial composition and DDR1 gene expression analysis in the occipital cortices of individuals with BD (n = 15) and healthy controls (n = 15) were conducted. Results: DDR1 5-methylcytosine levels were increased and directly associated with DDR1b mRNA expression in the brains of BD patients. We also observed that DDR1 was comethylated with a group of myelin genes. Conclusion: DDR1 is hypermethylated in BD brain tissue and is associated with isoform expression. Additionally, DDR1 comethylation with myelin genes supports the role of this receptor in myelination.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Xiaoshan Su ◽  
Junjie Chen ◽  
Xiaoping Lin ◽  
Xiaoyang Chen ◽  
Zhixing Zhu ◽  
...  

Abstract Background Cigarette smoking is a major risk factor for chronic obstructive pulmonary disease (COPD) and lung cancer. Epithelial–mesenchymal transition (EMT) is an essential pathophysiological process in COPD and plays an important role in airway remodeling, fibrosis, and malignant transformation of COPD. Previous studies have indicated FERMT3 is downregulated and plays a tumor-suppressive role in lung cancer. However, the role of FERMT3 in COPD, including EMT, has not yet been investigated. Methods The present study aimed to explore the potential role of FERMT3 in COPD and its underlying molecular mechanisms. Three GEO datasets were utilized to analyse FERMT3 gene expression profiles in COPD. We then established EMT animal models and cell models through cigarette smoke (CS) or cigarette smoke extract (CSE) exposure to detect the expression of FERMT3 and EMT markers. RT-PCR, western blot, immunohistochemical, cell migration, and cell cycle were employed to investigate the potential regulatory effect of FERMT3 in CSE-induced EMT. Results Based on Gene Expression Omnibus (GEO) data set analysis, FERMT3 expression in bronchoalveolar lavage fluid was lower in COPD smokers than in non-smokers or smokers. Moreover, FERMT3 expression was significantly down-regulated in lung tissues of COPD GOLD 4 patients compared with the control group. Cigarette smoke exposure reduced the FERMT3 expression and induces EMT both in vivo and in vitro. The results showed that overexpression of FERMT3 could inhibit EMT induced by CSE in A549 cells. Furthermore, the CSE-induced cell migration and cell cycle progression were reversed by FERMT3 overexpression. Mechanistically, our study showed that overexpression of FERMT3 inhibited CSE-induced EMT through the Wnt/β-catenin signaling. Conclusions In summary, these data suggest FERMT3 regulates cigarette smoke-induced epithelial–mesenchymal transition through Wnt/β-catenin signaling. These findings indicated that FERMT3 was correlated with the development of COPD and may serve as a potential target for both COPD and lung cancer.


2019 ◽  
Vol 18 (2) ◽  
pp. 21-26
Author(s):  
E. A. Shestakova ◽  
T. A. Bogush

Introduction . Inactive X chromosome (Xi) is associated with noncoding XIST RNA, series of proteins and contains multiple epigenetic modifications that altogether determine a silence of the most of X-linked genes. Recently the data were obtained that tumor suppressor BRCA1 is also associated with Xi. The purpose of this study was to reveal the colocalization of BRCA1 and XIST RNA and precise spatial organization on Xi with the high resolution of confocal microscopy.Materials and methods . The object of the study is IMR90hTERT diploid immortalized fibroblast cell line. For BRCA1 and XIST RNA colocalization analysis on Xi the method of fluorescent hybridization in situ associated with immunofluorescent cell staining (immunoFISH) and confocal microscopy were used. For BRCA1 and heterochromatin protein-1 colocalization study the method of double immunofluorescent staining and common fluorescent microscopy were applied. Results . The study using confocal fluorescent microscopy with higher resolution has demonstrated at first the colocalization of BRCA1 with XIST RNA region of Xi revealed with XIST RNA probes and with replicating Xi and autosomes revealed with BrdU in late S-phase of cell cycle. Altogether, the data obtained suggest the involvement of BRCA1 in the inhibition of gene expression on Xi due to the regulation of XIST RNA association with Xi. Moreover, according to the results of confocal microscopy, BRCA1 also colocalizes with replicating Xi and autosomes revealed with BrdU in late S-phase of cell cycle. This indicates a possible involvement of this protein in the replication of pericentromeric repeats in cellular chromosomes. Colocalization of BRCA1 with heterochromatin protein-1α presented in pericentromeric regions of all chromosomes supports this suggestion.Conclusions . Altogether, the data obtained in this study suggest the involvement of BRCA1 in the inhibition of gene expression on Xi due to the association with noncoding inhibiting XIST RNA and in replication of heterochromatin regions. 


Sign in / Sign up

Export Citation Format

Share Document