scholarly journals Structural analysis of GNAT acetyltransferases and protein acetylation

2014 ◽  
Vol 70 (a1) ◽  
pp. C299-C299
Author(s):  
Misty Kuhn ◽  
Karolina Majorek ◽  
Ekaterina Filippova ◽  
George Minasov ◽  
Alan Wolfe ◽  
...  

The Center for Structural Genomics for Infectious Diseases (CSGID) applies structural genomics approaches to biomedically relevant proteins from human pathogens and provides the infectious disease community with a high throughput pipeline for structure determination. Target proteins include drug targets, essential enzymes, virulence factors and vaccine candidates. Bacterial species generally have many acetyl-coenzyme A dependent GCN5-like Acetyl Transferases (GNATs), however, the substrates of most of them are unknown. Proteomic analysis has also revealed extensive post-translational modification of bacterial proteins, especially acetylation of lysine Nε. These observations led the CSGID to develop a high throughput substrate screen and initiate characterization of bacterial GNATs. One of the bacterial GNATs that acetylates lysine residues, is the Pseudomonas aeruginosa protein PA4794, that acetylates both peptides having a C-terminal lysine and the drug, chloramphenicol. Surprisingly, the acetylation of these two substrates by PA4794 is catalyzed by the enzyme using different active site residues and different kinetic mechanisms. Although it was expected that the GNATs would play a major role in protein acetylation, much of the lysine acetylation observed in bacteria is actually due to the metabolite acetylphosphate (1,2). Crystal structures and proteomics experiments revealed what makes some lysine residues particularly sensitive to acetylphosphate dependent lysine acetylation and what is required for subsequent enzymatic deacetylation. CSGID is funded with Federal funds from the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services, under Contracts No. HHSN272200700058C and HHSN272201200026C and Midwest Center for Structural Genomics by grant GM094585

2018 ◽  
Author(s):  
David G. Christensen ◽  
Jesse G. Meyer ◽  
Jackson T. Baumgartner ◽  
Alexandria K. D’Souza ◽  
William C. Nelson ◽  
...  

AbstractPost-translational modifications, such as Nε-lysine acetylation, regulate protein function. Nε-lysine acetylation can occur either non-enzymatically or enzymatically. The non-enzymatic mechanism uses acetyl phosphate (AcP) or acetyl coenzyme A (AcCoA) as acetyl donors to modify an Nε-lysine residue of a protein. The enzymatic mechanism uses Nε-lysine acetyltransferases (KATs) to specifically transfer an acetyl group from AcCoA to Nε-lysine residues on proteins. To date, only one KAT (YfiQ, also known as Pka and PatZ) has been identified inE. coli. Here, we demonstrate the existence of 4 additionalE. coliKATs: RimI, YiaC, YjaB, and PhnO. In a genetic background devoid of all known acetylation mechanisms (most notably AcP and YfiQ) and one deacetylase (CobB), overexpression of these putative KATs elicited unique patterns of protein acetylation. We mutated key active site residues and found that most of them eliminated enzymatic acetylation activity. We used mass spectrometry to identify and quantify the specificity of YfiQ and the four novel KATs. Surprisingly, our analysis revealed a high degree of substrate specificity. The overlap between KAT-dependent and AcP-dependent acetylation was extremely limited, supporting the hypothesis that these two acetylation mechanisms play distinct roles in the post-translational modification of bacterial proteins. We further showed that these novel KATs are conserved across broad swaths of bacterial phylogeny. Finally, we determined that one of the novel KATs (YiaC) and the known KAT (YfiQ) can negatively regulate bacterial migration. Together, these results emphasize distinct and specific non-enzymatic and enzymatic protein acetylation mechanisms present in bacteria.ImportanceNε-lysine acetylation is one of the most abundant and important post-translational modifications across all domains of life. One of the best-studied effects of acetylation occurs in eukaryotes, where acetylation of histone tails activates gene transcription. Although bacteria do not have true histones, Nε-lysine acetylation is prevalent; however, the role of these modifications is mostly unknown. We constructed anE. colistrain that lacked both known acetylation mechanisms to identify four new Nε-lysine acetyltransferases (RimI, YiaC, YjaB, and PhnO). We used mass spectrometry to determine the substrate specificity of these acetyltransferases. Structural analysis of selected substrate proteins revealed site-specific preferences for enzymatic acetylation that had little overlap with the preferences of the previously reported acetyl-phosphate non-enzymatic acetylation mechanism. Finally, YiaC and YfiQ appear to regulate flagellar-based motility, a phenotype critical for pathogenesis of many organisms. These acetyltransferases are highly conserved and reveal deeper and more complex roles for bacterial post-translational modification.


2022 ◽  
Vol 2 (1) ◽  
Author(s):  
Jianfei Guo ◽  
Xiaoqiang Chai ◽  
Yuchao Mei ◽  
Jiamu Du ◽  
Haining Du ◽  
...  

AbstractLysine-ε-acetylation (Kac) is a post-translational modification (PTM) that is critical for metabolic regulation and cell signaling in mammals. However, its prevalence and importance in plants remain to be determined. Employing high-resolution tandem mass spectrometry, we analyzed protein lysine acetylation in five representative Arabidopsis organs with 2 ~ 3 biological replicates per organ. A total of 2887 Kac proteins and 5929 Kac sites were identified. This comprehensive catalog allows us to analyze proteome-wide features of lysine acetylation. We found that Kac proteins tend to be more uniformly expressed in different organs, and the acetylation status exhibits little correlation with the gene expression level, indicating that acetylation is unlikely caused by stochastic processes. Kac preferentially targets evolutionarily conserved proteins and lysine residues, but only a small percentage of Kac proteins are orthologous between rat and Arabidopsis. A large portion of Kac proteins overlap with proteins modified by other PTMs including ubiquitination, SUMOylation and phosphorylation. Although acetylation, ubiquitination and SUMOylation all modify lysine residues, our analyses show that they rarely target the same sites. In addition, we found that “reader” proteins for acetylation and phosphorylation, i.e., bromodomain-containing proteins and GRF (General Regulatory Factor)/14-3-3 proteins, are intensively modified by the two PTMs, suggesting that they are main crosstalk nodes between acetylation and phosphorylation signaling. Analyses of GRF6/14-3-3λ reveal that the Kac level of GRF6 is decreased under alkaline stress, suggesting that acetylation represses plant alkaline response. Indeed, K56ac of GRF6 inhibits its binding to and subsequent activation of the plasma membrane H+-ATPase AHA2, leading to hypersensitivity to alkaline stress. These results provide valuable resources for protein acetylation studies in plants and reveal that protein acetylation suppresses phosphorylation output by acetylating GRF/14-3-3 proteins.


2014 ◽  
Vol 70 (a1) ◽  
pp. C432-C432
Author(s):  
George Minasov ◽  
Salvatore Nocadello ◽  
Ekaterina Filippova ◽  
Andrei Halavaty ◽  
Wayne Anderson

The Center for Structural Genomics for Infectious Diseases (CSGID) applies structural genomics approaches to biomedically important proteins from human pathogens. It also provides the infectious disease community with a high throughput pipeline for structure determination that carries out all steps of the process, from target selection through structure deposition. Target proteins include drug targets, essential enzymes, virulence factors and vaccine candidates. The CSGID has deposited over 680 structures in the Protein Data Bank. The proteins that are exposed on the surface of Gram positive bacterial pathogens (including Staphylococcus aureus, Bacillus anthracis, Listeria monocytogenes, Streptococcus species and Clostridium species) have been one focus area for the CSGID. So far, the structures of more than 55 of these proteins have been determined. The surface proteins are important in the interactions between the pathogen and its host, but many of them are as yet functionally uncharacterized. Among the examples that will be presented is the Bacillus anthracis SpoIID protein. SpoIID is part of a coordinated cell wall degradation machine that is essential for sporulation and the morphological changes involved. It represents a new family of lytic transglycosylases that degrade the glycan strands of the peptidoglycan cell wall. The two active site clefts in the dimeric enzyme include residues from both subunits, suggesting that the dimer is required for activity. This project has been funded in whole or in part with Federal funds from the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services, under Contracts No. HHSN272200700058C and HHSN272201200026C.


2019 ◽  
Author(s):  
Jesse G. Meyer

AbstractProtein post-translational modification (PTM) by acetylation at the ε-amine on lysine residues in proteins regulates various cellular processes including transcription and metabolism. Several metabolic and genetic perturbations are known to increase acetylation of various proteins. Hyper-acetylation can also be induced using deacetylase inhibitors. While there is much interest in discovering drugs that can reverse protein acetylation, pharmacological tools that increase non-enzymatic protein acetylation are needed in order to understand the physiological role of excess protein acetylation. In this study, I assessed whether inhibition of pyruvate dehydrogenase kinase (PDHK) could cause protein hyper-acetylation due to excess production of acetyl-CoA by pyruvate dehydrogenase (PDH). Western blot of total protein from dichloroacetate (DCA) treated hepatocytes with anti-acetyl-lysine antibody showed increased protein acetylation, and seahorse respirometry of DCA pretreated hepatocytes indicated a subtle decrease in basal and maximal respiratory capacity.


2022 ◽  
Vol 27 (1) ◽  
Author(s):  
Hongjuan You ◽  
Qi Li ◽  
Delong Kong ◽  
Xiangye Liu ◽  
Fanyun Kong ◽  
...  

AbstractCanonical Wnt/β-catenin signaling is a complex cell-communication mechanism that has a central role in the progression of various cancers. The cellular factors that participate in the regulation of this signaling are still not fully elucidated. Lysine acetylation is a significant protein modification which facilitates reversible regulation of the target protein function dependent on the activity of lysine acetyltransferases (KATs) and the catalytic function of lysine deacetylases (KDACs). Protein lysine acetylation has been classified into histone acetylation and non-histone protein acetylation. Histone acetylation is a kind of epigenetic modification, and it can modulate the transcription of important biological molecules in Wnt/β-catenin signaling. Additionally, as a type of post-translational modification, non-histone acetylation directly alters the function of the core molecules in Wnt/β-catenin signaling. Conversely, this signaling can regulate the expression and function of target molecules based on histone or non-histone protein acetylation. To date, various inhibitors targeting KATs and KDACs have been discovered, and some of these inhibitors exert their anti-tumor activity via blocking Wnt/β-catenin signaling. Here, we discuss the available evidence in understanding the complicated interaction of protein lysine acetylation with Wnt/β-catenin signaling, and lysine acetylation as a new target for cancer therapy via controlling this signaling.


mBio ◽  
2017 ◽  
Vol 8 (6) ◽  
Author(s):  
Ernesto S. Nakayasu ◽  
Meagan C. Burnet ◽  
Hanna E. Walukiewicz ◽  
Christopher S. Wilkins ◽  
Anil K. Shukla ◽  
...  

ABSTRACT Lysine acetylation is a common protein post-translational modification in bacteria and eukaryotes. Unlike phosphorylation, whose functional role in signaling has been established, it is unclear what regulatory mechanism acetylation plays and whether it is conserved across evolution. By performing a proteomic analysis of 48 phylogenetically distant bacteria, we discovered conserved acetylation sites on catalytically essential lysine residues that are invariant throughout evolution. Lysine acetylation removes the residue’s charge and changes the shape of the pocket required for substrate or cofactor binding. Two-thirds of glycolytic and tricarboxylic acid (TCA) cycle enzymes are acetylated at these critical sites. Our data suggest that acetylation may play a direct role in metabolic regulation by switching off enzyme activity. We propose that protein acetylation is an ancient and widespread mechanism of protein activity regulation. IMPORTANCE Post-translational modifications can regulate the activity and localization of proteins inside the cell. Similar to phosphorylation, lysine acetylation is present in both eukaryotes and prokaryotes and modifies hundreds to thousands of proteins in cells. However, how lysine acetylation regulates protein function and whether such a mechanism is evolutionarily conserved is still poorly understood. Here, we investigated evolutionary and functional aspects of lysine acetylation by searching for acetylated lysines in a comprehensive proteomic data set from 48 phylogenetically distant bacteria. We found that lysine acetylation occurs in evolutionarily conserved lysine residues in catalytic sites of enzymes involved in central carbon metabolism. Moreover, this modification inhibits enzymatic activity. Our observations suggest that lysine acetylation is an evolutionarily conserved mechanism of controlling central metabolic activity by directly blocking enzyme active sites.


Author(s):  
Youngchang Kim ◽  
Robert Jedrzejczak ◽  
Natalia I. Maltseva ◽  
Michael Endres ◽  
Adam Godzik ◽  
...  

ABSTRACTSevere Acute Respiratory Syndrome Coronavirus 2 is rapidly spreading around the world. There is no existing vaccine or proven drug to prevent infections and stop virus proliferation. Although this virus is similar to human and animal SARS- and MERS-CoVs the detailed information about SARS-CoV-2 proteins structures and functions is urgently needed to rapidly develop effective vaccines, antibodies and antivirals. We applied high-throughput protein production and structure determination pipeline at the Center for Structural Genomics of Infectious Diseases to produce SARS-CoV-2 proteins and structures. Here we report the high-resolution crystal structure of endoribonuclease Nsp15/NendoU from SARS-CoV-2 – a virus causing current world-wide epidemics. We compare this structure with previously reported models of Nsp15 from SARS and MERS coronaviruses.


2017 ◽  
Vol 199 (16) ◽  
Author(s):  
Valerie J. Carabetta ◽  
Ileana M. Cristea

ABSTRACT N ε-Lysine acetylation is now recognized as an abundant posttranslational modification (PTM) that influences many essential biological pathways. Advancements in mass spectrometry-based proteomics have led to the discovery that bacteria contain hundreds of acetylated proteins, contrary to the prior notion of acetylation events being rare in bacteria. Although the mechanisms that regulate protein acetylation are still not fully defined, it is understood that this modification is finely tuned via both enzymatic and nonenzymatic mechanisms. The opposing actions of Gcn5-related N-acetyltransferases (GNATs) and deacetylases, including sirtuins, provide the enzymatic control of lysine acetylation. A nonenzymatic mechanism of acetylation has also been demonstrated and proven to be prominent in bacteria, as well as in mitochondria. The functional consequences of the vast majority of the identified acetylation sites remain unknown. From studies in mammalian systems, acetylation of critical lysine residues was shown to impact protein function by altering its structure, subcellular localization, and interactions. It is becoming apparent that the same diversity of functions can be found in bacteria. Here, we review current knowledge of the mechanisms and the functional consequences of acetylation in bacteria. Additionally, we discuss the methods available for detecting acetylation sites, including quantitative mass spectrometry-based methods, which promise to promote this field of research. We conclude with possible future directions and broader implications of the study of protein acetylation in bacteria.


Author(s):  
Shaherin Basith ◽  
Gwang Lee ◽  
Balachandran Manavalan

Abstract Protein post-translational modification (PTM) is an important regulatory mechanism that plays a key role in both normal and disease states. Acetylation on lysine residues is one of the most potent PTMs owing to its critical role in cellular metabolism and regulatory processes. Identifying protein lysine acetylation (Kace) sites is a challenging task in bioinformatics. To date, several machine learning-based methods for the in silico identification of Kace sites have been developed. Of those, a few are prokaryotic species-specific. Despite their attractive advantages and performances, these methods have certain limitations. Therefore, this study proposes a novel predictor STALLION (STacking-based Predictor for ProkAryotic Lysine AcetyLatION), containing six prokaryotic species-specific models to identify Kace sites accurately. To extract crucial patterns around Kace sites, we employed 11 different encodings representing three different characteristics. Subsequently, a systematic and rigorous feature selection approach was employed to identify the optimal feature set independently for five tree-based ensemble algorithms and built their respective baseline model for each species. Finally, the predicted values from baseline models were utilized and trained with an appropriate classifier using the stacking strategy to develop STALLION. Comparative benchmarking experiments showed that STALLION significantly outperformed existing predictor on independent tests. To expedite direct accessibility to the STALLION models, a user-friendly online predictor was implemented, which is available at: http://thegleelab.org/STALLION.


2019 ◽  
Vol 26 (36) ◽  
pp. 6544-6563
Author(s):  
Victoria Lucia Alonso ◽  
Luis Emilio Tavernelli ◽  
Alejandro Pezza ◽  
Pamela Cribb ◽  
Carla Ritagliati ◽  
...  

Bromodomains recognize and bind acetyl-lysine residues present in histone and non-histone proteins in a specific manner. In the last decade they have raised as attractive targets for drug discovery because the miss-regulation of human bromodomains was discovered to be involved in the development of a large spectrum of diseases. However, targeting eukaryotic pathogens bromodomains continues to be almost unexplored. We and others have reported the essentiality of diverse bromodomain- containing proteins in protozoa, offering a new opportunity for the development of antiparasitic drugs, especially for Trypansoma cruzi, the causative agent of Chagas’ disease. Mammalian bromodomains were classified in eight groups based on sequence similarity but parasitic bromodomains are very divergent proteins and are hard to assign them to any of these groups, suggesting that selective inhibitors can be obtained. In this review, we describe the importance of lysine acetylation and bromodomains in T. cruzi as well as the current knowledge on mammalian bromodomains. Also, we summarize the myriad of small-molecules under study to treat different pathologies and which of them have been tested in trypanosomatids and other protozoa. All the information available led us to propose that T. cruzi bromodomains should be considered as important potential targets and the search for smallmolecules to inhibit them should be empowered.


Sign in / Sign up

Export Citation Format

Share Document