scholarly journals A novel innate lymphoid cell delineates childhood autoimmune arthritis

2018 ◽  
Author(s):  
Martin Del Castillo Velasco-Herrera ◽  
Matthew D Young ◽  
Felipe A Vieira Braga ◽  
Elizabeth C. Rosser ◽  
Elena Miranda ◽  
...  

Inflammation in autoimmune disease is mediated by a complex network of interacting cells. Their identity and cross-talk are encoded in messenger RNA (mRNA). Juvenile idiopathic arthritis (JIA), a chronic autoimmune arthritis of childhood, is characterised by synovial inflammation with infiltration of both innate and adaptive immune cells1. Activated T cells play a role in disease2 but the cell types that drive the recruitment and activation of immune cells within the synovium are not known. Here, we utilised droplet-based and full length single cell mRNA sequencing to obtain a quantitative map of the cellular landscape of JIA. We studied 45,715 cells from the synovial fluid of inflamed knee joints and peripheral blood. We identified a population of synovial innate lymphoid cells (ILCs), shared across patients, that exhibited a unique transcriptional profile in comparison to canonical ILC subtypes. Validation at protein-level across a spectrum of autoimmune arthritides revealed that these ILCs are pathologically expanded in a particular type of JIA. Using statistical tools to assess cellular interactions in synovial fluid, ILCs emerged as a central node of communication, expressing the full repertoire of genes required to orchestrate and maintain the inflammatory milieu. Several ILC-mediated signalling pathways may lend themselves as novel therapeutic targets. Together our findings demonstrate a distinct ILC subtype associated with a tissue-specific childhood autoimmune disease.

2016 ◽  
Vol 213 (11) ◽  
pp. 2229-2248 ◽  
Author(s):  
Elia D. Tait Wojno ◽  
David Artis

Innate lymphoid cells (ILCs) are innate immune cells that are ubiquitously distributed in lymphoid and nonlymphoid tissues and enriched at mucosal and barrier surfaces. Three major ILC subsets are recognized in mice and humans. Each of these subsets interacts with innate and adaptive immune cells and integrates cues from the epithelium, the microbiota, and pathogens to regulate inflammation, immunity, tissue repair, and metabolic homeostasis. Although intense study has elucidated many aspects of ILC development, phenotype, and function, numerous challenges remain in the field of ILC biology. In particular, recent work has highlighted key new questions regarding how these cells communicate with their environment and other cell types during health and disease. This review summarizes new findings in this rapidly developing field that showcase the critical role ILCs play in directing immune responses through their ability to interact with a variety of hematopoietic and nonhematopoietic cells. In addition, we define remaining challenges and emerging questions facing the field. Finally, this review discusses the potential application of basic studies of ILC biology to the development of new treatments for human patients with inflammatory and infectious diseases in which ILCs play a role.


2020 ◽  
Vol 126 (11) ◽  
pp. 1565-1589 ◽  
Author(s):  
Lakshmi Arivazhagan ◽  
Henry H. Ruiz ◽  
Robin A. Wilson ◽  
Michaele B. Manigrasso ◽  
Paul F. Gugger ◽  
...  

The escalating problem of obesity and its multiple metabolic and cardiovascular complications threatens the health and longevity of humans throughout the world. The cause of obesity and one of its chief complications, insulin resistance, involves the participation of multiple distinct organs and cell types. From the brain to the periphery, cell-intrinsic and intercellular networks converge to stimulate and propagate increases in body mass and adiposity, as well as disturbances of insulin sensitivity. This review focuses on the roles of the cadre of innate immune cells, both those that are resident in metabolic organs and those that are recruited into these organs in response to cues elicited by stressors such as overnutrition and reduced physical activity. Beyond the typical cast of innate immune characters invoked in the mechanisms of metabolic perturbation in these settings, such as neutrophils and monocytes/macrophages, these actors are joined by bone marrow–derived cells, such as eosinophils and mast cells and the intriguing innate lymphoid cells, which are present in the circulation and in metabolic organ depots. Upon high-fat feeding or reduced physical activity, phenotypic modulation of the cast of plastic innate immune cells ensues, leading to the production of mediators that affect inflammation, lipid handling, and metabolic signaling. Furthermore, their consequent interactions with adaptive immune cells, including myriad T-cell and B-cell subsets, compound these complexities. Notably, many of these innate immune cell-elicited signals in overnutrition may be modulated by weight loss, such as that induced by bariatric surgery. Recently, exciting insights into the biology and pathobiology of these cell type–specific niches are being uncovered by state-of-the-art techniques such as single-cell RNA-sequencing. This review considers the evolution of this field of research on innate immunity in obesity and metabolic perturbation, as well as future directions.


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 101-101
Author(s):  
Barry J Bradford

Abstract Our understanding of the immune system emerged from the study of disease processes and the communication networks used by various cell types to respond to pathogens. As with many aspects of physiology, this initial view was colored by the techniques available at the time. With technical advances beginning in the 1990, research in sepsis and obesity began to identify critical interactions between the immune system and metabolism. Our current understanding of these interactions is informed by two active but largely distinct research communities. Many in the field of immunology are utilizing cellular metabolism tools to understand mitochondrial function and fuel use in response to activation of innate and adaptive immune cells, especially as these relate to cancer. From another vantage point, many metabolic physiologists are now seeking to understand the importance of tissue-resident immune cells and immune signaling molecules in metabolic homeostasis and pathologies. Beyond human health implications of recent findings, a number of immunometabolism insights have informed our understanding of livestock health. In inflammatory events, phagocytic cells are activated, and the dramatic increase in oxidative metabolism is driven primarily by glucose use. Metabolism of healthy animals is also influenced by secretions from immune cells. Studies in mice indicate that appropriate host/microbe interactions (balancing protection and tolerance) are mediated by a network of immune cell types in the gut, which is critical to both absorptive and barrier functions of the gut. Adipose tissue immune cells regulate lipolytic rate, insulin sensitivity, and perhaps whole-body inflammatory tone. Local immune cell impacts on metabolism of other organs, including the liver and pancreas, are also emerging. Immunity and metabolism are tightly interwoven, and the evolving understanding of these links may enable nutritional or pharmacological strategies to enhance resilience to disease and alter nutrient partitioning in livestock.


2020 ◽  
Vol 21 (17) ◽  
pp. 6109
Author(s):  
Angela Saez ◽  
Beatriz Herrero-Fernandez ◽  
Raquel Gomez-Bris ◽  
Beatriz Somovilla-Crespo ◽  
Cristina Rius ◽  
...  

Nuclear envelope lamin A/C proteins are a major component of the mammalian nuclear lamina, a dense fibrous protein meshwork located in the nuclear interior. Lamin A/C proteins regulate nuclear mechanics and structure and control cellular signaling, gene transcription, epigenetic regulation, cell cycle progression, cell differentiation, and cell migration. The immune system is composed of the innate and adaptive branches. Innate immunity is mediated by myeloid cells such as neutrophils, macrophages, and dendritic cells. These cells produce a rapid and nonspecific response through phagocytosis, cytokine production, and complement activation, as well as activating adaptive immunity. Specific adaptive immunity is activated by antigen presentation by antigen presenting cells (APCs) and the cytokine microenvironment, and is mainly mediated by the cellular functions of T cells and the production of antibodies by B cells. Unlike most cell types, immune cells regulate their lamin A/C protein expression relatively rapidly to exert their functions, with expression increasing in macrophages, reducing in neutrophils, and increasing transiently in T cells. In this review, we discuss and summarize studies that have addressed the role played by lamin A/C in the functions of innate and adaptive immune cells in the context of human inflammatory and autoimmune diseases, pathogen infections, and cancer.


Science ◽  
2017 ◽  
Vol 358 (6359) ◽  
pp. 58-63 ◽  
Author(s):  
Michael J. T. Stubbington ◽  
Orit Rozenblatt-Rosen ◽  
Aviv Regev ◽  
Sarah A. Teichmann

The immune system varies in cell types, states, and locations. The complex networks, interactions, and responses of immune cells produce diverse cellular ecosystems composed of multiple cell types, accompanied by genetic diversity in antigen receptors. Within this ecosystem, innate and adaptive immune cells maintain and protect tissue function, integrity, and homeostasis upon changes in functional demands and diverse insults. Characterizing this inherent complexity requires studies at single-cell resolution. Recent advances such as massively parallel single-cell RNA sequencing and sophisticated computational methods are catalyzing a revolution in our understanding of immunology. Here we provide an overview of the state of single-cell genomics methods and an outlook on the use of single-cell techniques to decipher the adaptive and innate components of immunity.


Parasitology ◽  
2017 ◽  
Vol 144 (10) ◽  
pp. 1288-1301 ◽  
Author(s):  
LAUREN M. WEBB ◽  
ELIA D. TAIT WOJNO

SUMMARYThe complexity of helminth macroparasites is reflected in the intricate network of host cell types that participate in the Type 2 immune response needed to battle these organisms. In this context, adaptive T helper 2 cells and the Type 2 cytokines interleukin (IL)-4, IL-5, IL-9 and IL-13 have been the focus of research for years, but recent work has demonstrated that the innate immune system plays an essential role. Some innate immune cells that promote Type 2 immunity are relatively abundant, such as macrophages and eosinophils. However, we now appreciate that more rare cell types including group 2 innate lymphoid cells, basophils, mast cells and dendritic cells make significant contributions to these responses. These cells are found at low frequency but they are specialized to their roles – located at sites such as the skin, lung and gut, where the host combats helminth parasites. These cells respond rapidly and robustly to worm antigens and worm-induced damage to produce essential cytokines, chemokines, eicosanoids and histamine to activate damaged epithelium and to recruit other effectors. Thus, a greater understanding of how these cells operate is essential to understand how the host protects itself during helminth infection.


2020 ◽  
Vol 9 (2) ◽  
pp. 561 ◽  
Author(s):  
Thomas Koudstaal ◽  
Karin A. Boomars ◽  
Mirjam Kool

Pulmonary hypertension (PH) is a debilitating progressive disease characterized by increased pulmonary arterial pressures, leading to right ventricular (RV) failure, heart failure and, eventually, death. Based on the underlying conditions, PH patients can be subdivided into the following five groups: (1) pulmonary arterial hypertension (PAH), (2) PH due to left heart disease, (3) PH due to lung disease, (4) chronic thromboembolic PH (CTEPH), and (5) PH with unclear and/or multifactorial mechanisms. Currently, even with PAH-specific drug treatment, prognosis for PAH and CTEPH patients remains poor, with mean five-year survival rates of 57%–59% and 53%–69% for PAH and inoperable CTEPH, respectively. Therefore, more insight into the pathogenesis of PAH and CTEPH is highly needed, so that new therapeutic strategies can be developed. Recent studies have shown increased presence and activation of innate and adaptive immune cells in both PAH and CTEPH patients. Moreover, extensive biomarker research revealed that many inflammatory and immune markers correlate with the hemodynamics and/or prognosis of PAH and CTEPH patients. Increased evidence of the pathological role of immune cells in innate and adaptive immunity has led to many promising pre-clinical interventional studies which, in turn, are leading to innovative clinical trials which are currently being performed. A combination of immunomodulatory therapies might be required besides current treatment based on vasodilatation alone, to establish an effective treatment and prevention of progression for this disease. In this review, we describe the recent progress on our understanding of the involvement of the individual cell types of the immune system in PH. We summarize the accumulating body of evidence for inflammation and immunity in the pathogenesis of PH, as well as the use of inflammatory biomarkers and immunomodulatory therapy in PAH and CTEPH.


Author(s):  
Ramy Elsaid ◽  
Francisca Soares-da-Silva ◽  
Marcia Peixoto ◽  
Dali Amiri ◽  
Nathan Mackowski ◽  
...  

The identification of distinct waves of progenitors during development, each corresponding to a specific time, space, and function, provided the basis for the concept of a “layered” organization in development. The concept of a layered hematopoiesis was established by classical embryology studies in birds and amphibians. Recent progress in generating reliable lineage tracing models together with transcriptional and proteomic analyses in single cells revealed that, also in mammals, the hematopoietic system evolves in successive waves of progenitors with distinct properties and fate. During embryogenesis, sequential waves of hematopoietic progenitors emerge at different anatomic sites, generating specific cell types with distinct functions and tissue homing capacities. The first progenitors originate in the yolk sac before the emergence of hematopoietic stem cells, some giving rise to progenies that persist throughout life. Hematopoietic stem cell-derived cells that protect organisms against environmental pathogens follow the same sequential strategy, with subsets of lymphoid cells being only produced during embryonic development. Growing evidence indicates that fetal immune cells contribute to the proper development of the organs they seed and later ensure life-long tissue homeostasis and immune protection. They include macrophages, mast cells, some γδ T cells, B-1 B cells, and innate lymphoid cells, which have “non-redundant” functions, and early perturbations in their development or function affect immunity in the adult. These observations challenged the view that all hematopoietic cells found in the adult result from constant and monotonous production from bone marrow-resident hematopoietic stem cells. In this review, we evaluate evidence for a layered hematopoietic system across species. We discuss mechanisms and selective pressures leading to the temporal generation of different cell types. We elaborate on the consequences of disturbing fetal immune cells on tissue homeostasis and immune development later in life.


2022 ◽  
Vol 11 (2) ◽  
pp. 400
Author(s):  
Aleksandra Kałużna ◽  
Paweł Olczyk ◽  
Katarzyna Komosińska-Vassev

Ulcerative colitis (UC) is a chronic inflammatory disease with an underlying excessive immune response directed against resident microbiota and/or dietary antigens. Both innate and adaptive immune cells play a crucial role in the pathogenesis of UC. In the case of innate immune response cells, neutrophils, dendritic cells, macrophages have a crucial impact on the development of the disease, as well as innate lymphoid cells, which have received a particular attention in recent years. On the other hand, mechanisms of the adaptive immune response involve cells such as: cytotoxic lymphocytes, regulatory lymphocytes Treg, or helper lymphocytes Th–Th2, Th9, Th17, Th22, among which significant discoveries about Th9 and Th17 lymphocytes have been made in recent years. Due to the presence of antibodies directed against resident microbiota or one’s own tissues, the influence of B lymphocytes on the development of UC is also highlighted. Additionally, the impact of cytokines on shaping the immune response as well as sustaining inflammation seems to be crucial. This review briefly describes the current state of knowledge about the involvement of the innate and adaptive immune systems in the pathogenesis of UC. The review is based on personal selection of literature that were retrieved by a selective search in PubMed using the terms “ulcerative colitis” and “pathogenesis of ulcerative colitis”. It included systematic reviews, meta-analyses and clinical trials. Our knowledge of the involvement of the immune system in the pathophysiology of IBD has advanced rapidly over the last two decades, leading to the development of several immune-targeted treatments with a biological source, known as biologic agents.


Sign in / Sign up

Export Citation Format

Share Document