scholarly journals S-acylated Golga7b stabilises DHHC5 at the plasma membrane to regulate desmosome assembly and cell adhesion

2018 ◽  
Author(s):  
Keith T. Woodley ◽  
Mark O. Collins

AbstractS-acylation is the only fully reversible lipid modification of proteins however little is known about how protein S-acyltransferases (PATs) that mediate it are regulated. DHHC5 is a plasma membrane-localised PAT with roles in synaptic plasticity, massive endocytosis and cancer cell growth/invasion. Here we demonstrate that stabilisation of DHHC5 at the plasma membrane requires binding to and palmitoylation of an accessory protein Golga7b. This interaction requires the palmitoylation of the C-terminus of DHHC5 which regulates the internalisation of DHHC5 from the plasma membrane. Proteomic analysis of DHHC5/Golga7b-associated protein complexes reveals an enrichment in adhesion proteins, particularly components of desmosomes. We show that Desmoglein-2 and Plakophilin-3 are substrates of DHHC5 and that DHHC5/Golga7b are required for localisation of Desmoglein-2 to the plasma membrane and desmosomal patterning. Loss of DHHC5/Golga7b causes functional impairments in cell adhesion suggesting these proteins have a wider role in cell adhesion beyond desmosome assembly. This work uncovers a novel mechanism of DHHC5 regulation by Golga7b and demonstrates a role for the DHHC5/Golga7b complex in the regulation of cell adhesion.


2018 ◽  
Author(s):  
Joshua Greig ◽  
Natalia A. Bulgakova

AbstractThe regulation of E-cadherin at the plasma membrane by endocytosis is of vital importance for developmental and disease. p120-catenin, which binds to the E-cadherin C-terminus, can both promote and inhibit E-cadherin endocytosis. However, little is known about what determines the directionality of p120-catenin activity, and the molecules downstream. Here, we have discovered that p120-catenin fine-tunes the clathrin-mediated endocytosis of E-cadherin in Drosophila embryonic epidermal cells. It simultaneously activated two actin-remodelling pathways with opposing effects: RhoA, which stabilized E-cadherin at the membrane, and Arf1, which promoted internalization. Epistasis experiments revealed that RhoA additionally inhibited Arf1. E-cadherin was efficiently endocytosed only in the presence of intermediate p120-catenin amounts with too little and too much p120-catenin inhibiting E-cadherin endocytosis. Finally, we found that p120-catenin levels altered the tension of the plasma membrane. Altogether, this shows that p120-catenin is a central hub which co-ordinates cell adhesion, endocytosis, and actin dynamics with tissue tension.



2005 ◽  
Vol 41 ◽  
pp. 15-30 ◽  
Author(s):  
Helen C. Ardley ◽  
Philip A. Robinson

The selectivity of the ubiquitin–26 S proteasome system (UPS) for a particular substrate protein relies on the interaction between a ubiquitin-conjugating enzyme (E2, of which a cell contains relatively few) and a ubiquitin–protein ligase (E3, of which there are possibly hundreds). Post-translational modifications of the protein substrate, such as phosphorylation or hydroxylation, are often required prior to its selection. In this way, the precise spatio-temporal targeting and degradation of a given substrate can be achieved. The E3s are a large, diverse group of proteins, characterized by one of several defining motifs. These include a HECT (homologous to E6-associated protein C-terminus), RING (really interesting new gene) or U-box (a modified RING motif without the full complement of Zn2+-binding ligands) domain. Whereas HECT E3s have a direct role in catalysis during ubiquitination, RING and U-box E3s facilitate protein ubiquitination. These latter two E3 types act as adaptor-like molecules. They bring an E2 and a substrate into sufficiently close proximity to promote the substrate's ubiquitination. Although many RING-type E3s, such as MDM2 (murine double minute clone 2 oncoprotein) and c-Cbl, can apparently act alone, others are found as components of much larger multi-protein complexes, such as the anaphase-promoting complex. Taken together, these multifaceted properties and interactions enable E3s to provide a powerful, and specific, mechanism for protein clearance within all cells of eukaryotic organisms. The importance of E3s is highlighted by the number of normal cellular processes they regulate, and the number of diseases associated with their loss of function or inappropriate targeting.



2020 ◽  
Vol 21 (8) ◽  
pp. 821-830
Author(s):  
Vibhor Mishra

The affinity tags are unique proteins/peptides that are attached at the N- or C-terminus of the recombinant proteins. These tags help in protein purification. Additionally, some affinity tags also serve a dual purpose as solubility enhancers for challenging protein targets. By applying a combinatorial approach, carefully chosen affinity tags designed in tandem have proven to be very successful in the purification of single proteins or multi-protein complexes. In this mini-review, the key features of the most commonly used affinity tags are discussed. The affinity tags have been classified into two significant categories, epitope tags, and protein/domain tags. The epitope tags are generally small peptides with high affinity towards a chromatography resin. The protein/domain tags often perform double duty as solubility enhancers as well as aid in affinity purification. Finally, protease-based affinity tag removal strategies after purification are discussed.



2021 ◽  
Vol 7 (12) ◽  
pp. eabd4113
Author(s):  
Rui Miao ◽  
Wei Yuan ◽  
Yue Wang ◽  
Irene Garcia-Maquilon ◽  
Xiaolin Dang ◽  
...  

The hab1-1abi1-2abi2-2pp2ca-1 quadruple mutant (Qabi2-2) seedlings lacking key negative regulators of ABA signaling, namely, clade A protein phosphatases type 2C (PP2Cs), show more apoplastic H+ efflux in roots and display an enhanced root growth under normal medium or water stress medium compared to the wild type. The presence of low ABA concentration (0.1 micromolar), inhibiting PP2C activity via monomeric ABA receptors, enhances root apoplastic H+ efflux and growth of the wild type, resembling the Qabi2-2 phenotype in normal medium. Qabi2-2 seedlings also demonstrate increased hydrotropism compared to the wild type in obliquely-oriented hydrotropic experimental system, and asymmetric H+ efflux in root elongation zone is crucial for root hydrotropism. Moreover, we reveal that Arabidopsis ABA-insensitive 1, a key PP2C in ABA signaling, interacts directly with the C terminus of Arabidopsis plasma membrane H+-dependent adenosine triphosphatase 2 (AHA2) and dephosphorylates its penultimate threonine residue (Thr947), whose dephosphorylation negatively regulates AHA2.



2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Tuomas Huokko ◽  
Tao Ni ◽  
Gregory F. Dykes ◽  
Deborah M. Simpson ◽  
Philip Brownridge ◽  
...  

AbstractHow thylakoid membranes are generated to form a metabolically active membrane network and how thylakoid membranes orchestrate the insertion and localization of protein complexes for efficient electron flux remain elusive. Here, we develop a method to modulate thylakoid biogenesis in the rod-shaped cyanobacterium Synechococcus elongatus PCC 7942 by modulating light intensity during cell growth, and probe the spatial-temporal stepwise biogenesis process of thylakoid membranes in cells. Our results reveal that the plasma membrane and regularly arranged concentric thylakoid layers have no physical connections. The newly synthesized thylakoid membrane fragments emerge between the plasma membrane and pre-existing thylakoids. Photosystem I monomers appear in the thylakoid membranes earlier than other mature photosystem assemblies, followed by generation of Photosystem I trimers and Photosystem II complexes. Redistribution of photosynthetic complexes during thylakoid biogenesis ensures establishment of the spatial organization of the functional thylakoid network. This study provides insights into the dynamic biogenesis process and maturation of the functional photosynthetic machinery.



Children ◽  
2021 ◽  
Vol 8 (5) ◽  
pp. 380
Author(s):  
Nikolaos Vrachnis ◽  
Dimitrios Zygouris ◽  
Dionysios Vrachnis ◽  
Nikolaos Roussos ◽  
Nikolaos Loukas ◽  
...  

In spite of the great advances made in recent years in prenatal and perinatal medicine, inflammation can still frequently result in injury to vital organs and often constitutes a major cause of morbidity. It is today well established that in neonates—though vulnerability to infection among neonates is triggered by functional impairments in leukocyte adhesion—the decreased expression of cell adhesion molecules also decreases the inflammatory response. It is also clear that the cell adhesion molecules, namely, the integrins, selectins, and the immunoglobulin (Ig) gene super family, all play a crucial role in the inflammatory cascade. Thus, by consolidating our knowledge concerning the actions of these vital cell adhesion molecules during the prenatal period as well as regarding the genetic deficiencies of these molecules, notably leukocyte adhesion deficiency (LAD) I, II, and III, which can provoke severe clinical symptoms throughout the first year of life, it is anticipated that intervention involving blocking the function of cell adhesion molecules in neonatal leukocytes has the potential to constitute an effective therapeutic approach for inflammation. A promising perspective is the potential use of antibody therapy in preterm and term infants with perinatal inflammation and infection focusing on cases in which LAD is involved, while a further important scientific advance related to this issue could be the combination of small peptides aimed at the inhibition of cellular adhesion.



2010 ◽  
Vol 9 (5) ◽  
pp. 795-805 ◽  
Author(s):  
Nadine Zekert ◽  
Daniel Veith ◽  
Reinhard Fischer

ABSTRACT Peroxisomes are a diverse class of organelles involved in different physiological processes in eukaryotic cells. Although proteins imported into peroxisomes carry a peroxisomal targeting sequence at the C terminus (PTS1) or an alternative one close to the N terminus (PTS2), the protein content of peroxisomes varies drastically. Here we suggest a new class of peroxisomes involved in microtubule (MT) formation. Eukaryotic cells assemble MTs from distinct points in the cell. In the fungus Aspergillus nidulans, septum-associated microtubule-organizing centers (sMTOCs) are very active in addition to the spindle pole bodies (SPBs). Previously, we identified a novel MTOC-associated protein, ApsB (Schizosaccharomyces pombe mto1), whose absence affected MT formation from sMTOCs more than from SPBs, suggesting that the two protein complexes are organized differently. We show here that sMTOCs share at least two further components, gamma-tubulin and GcpC (S. pombe Alp6) with SPBs and found that ApsB interacts with gamma-tubulin. In addition, we discovered that ApsB interacts with the Woronin body protein HexA and is targeted to a subclass of peroxisomes via a PTS2 peroxisomal targeting sequence. The PTS2 motif was necessary for function but could be replaced with a PTS1 motif at the C terminus of ApsB. These results suggest a novel function for a subclass of peroxisomes in cytoskeletal organization.



2016 ◽  
Vol 11 (4) ◽  
pp. e1149676 ◽  
Author(s):  
Bastien Cayrol ◽  
Amandine Delteil ◽  
Enrico Gobbato ◽  
Thomas Kroj ◽  
Jean-Benoit Morel


2016 ◽  
Vol 91 (3) ◽  
Author(s):  
Jolene Ramsey ◽  
Emily C. Renzi ◽  
Randy J. Arnold ◽  
Jonathan C. Trinidad ◽  
Suchetana Mukhopadhyay

ABSTRACT Palmitoylation is a reversible, posttranslational modification that helps target proteins to cellular membranes. The alphavirus small membrane proteins 6K and TF have been reported to be palmitoylated and to positively regulate budding. 6K and TF are isoforms that are identical in their N termini but unique in their C termini due to a −1 ribosomal frameshift during translation. In this study, we used cysteine (Cys) mutants to test differential palmitoylation of the Sindbis virus 6K and TF proteins. We modularly mutated the five Cys residues in the identical N termini of 6K and TF, the four additional Cys residues in TF's unique C terminus, or all nine Cys residues in TF. Using these mutants, we determined that TF palmitoylation occurs primarily in the N terminus. In contrast, 6K is not palmitoylated, even on these shared residues. In the C-terminal Cys mutant, TF protein levels increase both in the cell and in the released virion compared to the wild type. In viruses with the N-terminal Cys residues mutated, TF is much less efficiently localized to the plasma membrane, and it is not incorporated into the virion. The three Cys mutants have minor defects in cell culture growth but a high incidence of abnormal particle morphologies compared to the wild-type virus as determined by transmission electron microscopy. We propose a model where the C terminus of TF modulates the palmitoylation of TF at the N terminus, and palmitoylated TF is preferentially trafficked to the plasma membrane for virus budding. IMPORTANCE Alphaviruses are a reemerging viral cause of arthritogenic disease. Recently, the small 6K and TF proteins of alphaviruses were shown to contribute to virulence in vivo. Nevertheless, a clear understanding of the molecular mechanisms by which either protein acts to promote virus infection is missing. The TF protein is a component of budded virions, and optimal levels of TF correlate positively with wild-type-like particle morphology. In this study, we show that the palmitoylation of TF regulates its localization to the plasma membrane, which is the site of alphavirus budding. Mutants in which TF is not palmitoylated display drastically reduced plasma membrane localization, which effectively prevents TF from participating in budding or being incorporated into virus particles. Investigation of the regulation of TF will aid current efforts in the alphavirus field searching for approaches to mitigate alphaviral disease in humans.



Sign in / Sign up

Export Citation Format

Share Document