scholarly journals Quantum energy levels of glutamate modulate neural biophotonic signals

2018 ◽  
Author(s):  
Zhengrong Han ◽  
Weitai Chai ◽  
Zhuo Wang ◽  
Fangyan Xiao ◽  
Jiapei Dai

Glutamate is the most abundant excitatory neurotransmitter in the brain, and it plays an essential and important role in neural functions. Hypofunction of the glutamatergic pathway and the changes in the glutamate-glutamine cycle function are important neuropathological mechanisms of severe mental disorders including schizophrenia and depression. Current studies have shown that glutamate can induce neural biophotonic activity and transmission, which may involve the mechanism of photon quantum brain; however, it is unclear whether such a mechanism follows the principle of quantum mechanics. Here we show that the action of glutamate on its receptors leads to a decrease in its quantum energy levels, and glutamate then partially or completely loses its function to further induce the biophotonic activity in mouse brain slices. The reduced quantum energy levels of glutamate can be restored by direct-current electrical discharges and the use of energy transfer of chloroplast photosynthesis; hence, the quantum energy recovered glutamate can again induce significant biophotonic activity. Furthermore, the changes in quantum energy levels of glutamate are related to the exchange and transfer of electron energy on its active hydrogen atom. These findings suggest that the glutamate-induced neural biophotonic signals may be involved in the transfer of the quantum energy levels of glutamate, which implies a quantum mechanism of neurotransmitter action. The process of glutamate recycling that is related to the synergism of neurons and glial cells and certain key enzymes may be necessary for the recovery of quantum energy levels of glutamate after completion of the neural signal transmission. These findings may also provide a new idea to develop quantum drugs.

2019 ◽  
Author(s):  
Hayley Tomes ◽  
Anja de Lange ◽  
Ulrich Fabien Prodjinotho ◽  
Siddhartha Mahanty ◽  
Katherine Smith ◽  
...  

AbstractNeurocysticercosis (NCC) is caused by the presence of Taenia solium larvae in the brain and is the leading cause of adult-acquired epilepsy worldwide. However, little is known about how seizures emerge in NCC. To address this knowledge gap we used whole-cell patch-clamp electrophysiology and calcium imaging in rodent hippocampal organotypic slice cultures to identify direct effects of cestode larval products on neuronal activity. We found both whole cyst homogenate and excretory/secretory (E/S) products of Taenia larvae have an acute excitatory effect on neurons, which trigger seizure-like events in vitro. Underlying this effect was Taenia-induced neuronal depolarization, which was mediated by glutamate receptor activation but not by nicotinic acetylcholine receptors, acid-sensing ion channels nor Substance P. Glutamate assays revealed the homogenate of both Taenia crassiceps and Taenia solium larvae contained high concentrations of glutamate and that larvae of both species consistently produce and release this excitatory neurotransmitter into their immediate environment. These findings contribute towards the understanding of seizure generation in NCC.Author summaryBrain infection by larvae of the tapeworm Taenia solium (neurocysticercosis or NCC) is the leading cause of acquired epilepsy in adulthood. Little is understood about the mechanisms by which larvae cause seizures. To address this, we used electrophysiological and imaging techniques in rodent brain slices to investigate how tapeworm larvae directly impact neuronal function. We discovered that both the homogenate and secretory products of tapeworm larvae excite neurons and can trigger seizure-like events in brain slices. This effect was caused by the activation of glutamate receptors and not by activating other types of receptors in the brain. Finally, we observed that tapeworm larvae both contain and release the neurotransmitter glutamate into their immediate environment. These findings are relevant for understanding how tapeworm larvae cause seizures in NCC.


2012 ◽  
Vol 32 (5) ◽  
pp. 816-824 ◽  
Author(s):  
Maha El Hage ◽  
Justine Masson ◽  
Agnès Conjard-Duplany ◽  
Bernard Ferrier ◽  
Gabriel Baverel ◽  
...  

In the brain, glutaminase is considered to have a key role in the provision of glutamate, a major excitatory neurotransmitter. Brain slices obtained from wild-type (control) and glutaminase-deficient (GLS1 +/–) mice were incubated without glucose and with 5 or 1 mmol/L [3-13C]glutamine as substrate. At the end of the incubation, substrate removal and product formation were measured by both enzymatic and carbon 13 nuclear magnetic resonance (13C-NMR) techniques. Slices from GLS1 +/– mice consumed less [3-13C]glutamine and accumulated less [3-13C]glutamate. They also produced less 13CO2 but accumulated amounts of 13C-aspartate and 13C-gamma-aminobutyric acid (GABA) that were similar to those found with brain slices from control mice. The newly formed glutamine observed in slices from control mice remained unchanged in slices from GLS1 +/– mice. As expected, flux through glutaminase in slices from GLS1 +/– mice was found diminished. Fluxes through all enzymes of the tricarboxylic acid cycle were also reduced in brain slices from GLS1 +/– mice except through malate dehydrogenase with 5 mmol/L [3-13C]glutamine. The latter diminutions are consistent with the decreases in the production of 13CO2 also observed in the slices from these mice. It is concluded that the genetic approach used in this study confirms the key role of glutaminase for the provision of glutamate.


2000 ◽  
Vol 662 ◽  
Author(s):  
Jenna L. Rickus ◽  
Esther Lan ◽  
Allan J. Tobin ◽  
Jeffery I. Zink ◽  
Bruce Dunn

AbstractThe amino acid glutamate is the major excitatory neurotransmitter used in the nervous system for interneuronal communication. It is used throughout the brain by various neuronal pathways including those involved in learning and memory, locomotion, and sensory perception. Because glutamate is released from neurons on a millisecond time scale into sub-micrometer spaces, the development of a glutamate biosensor with high temporal and spatial resolution is of great interest for the study of neurological function and disease. Here, we demonstrate the feasibility of an optical glutamate sensor based on the sol-gel encapsulation of the enzyme glutamate dehydrogenase (GDH). GDH catalyses the oxidative deamination of glutamate and the reduction of NAD+ to NADH. NADH fluorescence is the basis of the sensor detection. Thermodynamic and kinetic studies show that GDH remains active in the sol-gel matrix and that the reaction rate is correlated to the glutamate concentration.


2011 ◽  
Vol 25 (06) ◽  
pp. 413-418
Author(s):  
JI-SUO WANG ◽  
KE-ZHU YAN ◽  
BAO-LONG LIANG

Starting from the classical equation of the motion of a domain wall in the ferromagnetic systems, the quantum energy levels of the wall and the corresponding eigenfunctions in the case of considering damping term are given by using the canonical quantization method and unitary transformation. The quantum fluctuations of displacement and momentum of the moving wall has also been given as well as the uncertain relation.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi222-vi222
Author(s):  
Breanna Mann ◽  
Noah Bell ◽  
Denise Dunn ◽  
Scott Floyd ◽  
Shawn Hingtgen ◽  
...  

Abstract Brain cancers remain one of the greatest medical challenges. The lack of experimentally tractable models that recapitulate brain structure/function represents a major impediment. Platforms that enable functional testing in high-fidelity models are urgently needed to accelerate the identification and translation of therapies to improve outcomes for patients suffering from brain cancer. In vitro assays are often too simple and artificial while in vivo studies can be time-intensive and complicated. Our live, organotypic brain slice platform can be used to seed and grow brain cancer cell lines, allowing us to bridge the existing gap in models. These tumors can rapidly establish within the brain slice microenvironment, and morphologic features of the tumor can be seen within a short period of time. The growth, migration, and treatment dynamics of tumors seen on the slices recapitulate what is observed in vivo yet is missed by in vitro models. Additionally, the brain slice platform allows for the dual seeding of different cell lines to simulate characteristics of heterogeneous tumors. Furthermore, live brain slices with embedded tumor can be generated from tumor-bearing mice. This method allows us to quantify tumor burden more effectively and allows for treatment and retreatment of the slices to understand treatment response and resistance that may occur in vivo. This brain slice platform lays the groundwork for a new clinically relevant preclinical model which provides physiologically relevant answers in a short amount of time leading to an acceleration of therapeutic translation.


2021 ◽  
Vol 19 (2) ◽  
pp. 19-27
Author(s):  
A. V. DUBOVAYA ◽  
◽  
S. Ya. IAROSHENKO ◽  
O. A. PRILUTSKAYA ◽  
◽  
...  

The article discusses the influence of stress on the development of nervous tissue, in particular, on the synthesis of neurotrophins (by the example of the brain-derived neurotrophic factor (BDNF), as the most studied class representative). The biological functions of BDNF are discussed as well as its influence on neuroplasticity and the mechanisms by which the protection of neurons is carried out. The article covers the relationship of the stress-implementing system (hypothalamic-pituitary-adrenal axis) and its main active agent (cortisol) with the BDNF synthesis system at its various levels: from the inhibition of mRNA formation to the mechanisms of postsynaptic signal transmission. Information is also provided on changes of BDNF levels due to the maternal deprivation. Epigenetic changes under the influence of glucocorticoids are also reported. However, it is not only glucocorticoids that alter the functioning of the neurotrophin system. The article provides examples of the reverse effect, enabling to consider neurotrophins as a substance with an anti-stress function. In conclusion, the authors give examples of activities that, according to research, can stimulate the synthesis of neurotrophic factor in the brain.


2017 ◽  
Author(s):  
Koen Kole ◽  
Tansu Celikel

AbstractThe heterogeneous organization of the mammalian neocortex poses a challenge to elucidate the molecular mechanisms underlying its physiological processes. Although high-throughput molecular methods are increasingly deployed in neuroscience, their anatomical specificity is often lacking. Here we introduce a targeted microdissection technique that enables extraction of high-quality RNA and proteins at high anatomical resolution from acutely prepared brain slices. We exemplify its utility by isolating single cortical columns and laminae from the mouse primary somatosensory (barrel) cortex. Tissues can be isolated from living slices in minutes, and the extracted RNA and protein are of sufficient quantity and quality to be used for RNA-sequencing and mass spectrometry. This technique will help to increase the anatomical specificity of molecular studies of the neocortex, and the brain in general as it is applicable to any brain structure that can be identified using optical landmarks in living slices.


1969 ◽  
Vol 111 (2) ◽  
pp. 157-165 ◽  
Author(s):  
A. Sheltawy ◽  
R. M. C. Dawson

1. The distribution of individual phospholipids was determined in hen brain and compared with that in sciatic nerve obtained in a previous investigation. Sciatic nerve is more enriched in the myelinic phospholipids ethanolamine plasmalogen, phosphatidylserine and sphingomyelin, but it contains relatively less triphosphoinositide, and much less diphosphoinositide, than the brain. 2. The course of incorporation of intraperitoneally injected 32P into the acid-soluble phosphorus, phosphoinositides and total phospholipids of hen brain and sciatic nerve was followed. Although the maximum specific radioactivity in sciatic nerve of acid-soluble phosphorus is 4·5 times, and that of triphosphoinositide six times, that in the brain, the relative rate of triphosphoinositide phosphorus synthesis per gram of brain is three times that in sciatic nerve. 3. Administration of the demyelinating agent tri-o-cresyl phosphate to hens has no significant effect on the amounts or the rate of 32P incorporation into the total phospholipids of the sciatic nerve. However, the rate of incorporation of 32P into triphosphoinositide, although not its concentration, is raised from the first day after administration of the drug and remains thus 13 and 23 days later. 4. The incorporation of 32P into polyphosphoinositides of hen brain slices in vitro was studied. The recovery of triphosphoinositide from the slices is markedly increased in the presence of EDTA, although the rate of incorporation of 32P is unaffected. The incorporation of 32P is dependent on the presence of Mg2+ and Ca2+ in the medium, and is decreased when Na+ is replaced with K+ or cholinium ions.


2015 ◽  
Vol 113 (2) ◽  
pp. 350-365 ◽  
Author(s):  
M. H. Mohajeri ◽  
J. Wittwer ◽  
K. Vargas ◽  
E. Hogan ◽  
A. Holmes ◽  
...  

Common pharmacological treatments of mood disorders aim to modulate serotonergic neurotransmission and enhance serotonin levels in the brain. Brain serotonin levels are dependent on the availability of its food-derived precursor essential amino acid tryptophan (Trp). We tested the hypothesis that delivery of Trp via food may serve as an alternative treatment, and examined the effects of a Trp-rich, bioavailable dietary supplement from egg protein hydrolysate on cognitive and emotional functions, mood state, and sleep quality. In a randomised, placebo-controlled, parallel trial, fifty-nine mentally and physically healthy women aged 45–65 years received placebo (n 30) or the supplement (n 29) (both as 0·5 g twice per d) for 19 d. Emotional processing was significantly changed by supplementation, exhibiting a shift in bias away from negative stimuli. The results for the Affective Go/No-Go Task exhibited a slowing of responses to negative words, suggesting reduced attention to negative emotional stimuli. The results for the Facial Emotional Expression Rating Task also supported a shift away from attention to negative emotions and a bias towards happiness. An increase in arousal-like symptoms, labelled ‘high energy’, shorter reaction times and a slight benefit to sustained attention were observed in the treated subjects. Finally, when the supplement was taken 60–90 min before bedtime, a feeling of happiness before going to bed was consistently reported. In summary, daily consumption of a low-dose supplement containing bioavailable Trp may have beneficial effects on emotional and cognitive functions.


Sign in / Sign up

Export Citation Format

Share Document