scholarly journals In vivo screen identifies LXR agonism potentiates sorafenib killing of hepatocellular carcinoma

2019 ◽  
Author(s):  
Morgan E. Preziosi ◽  
Adam M. Zahm ◽  
Alexandra M. Vázquez-Salgado ◽  
Daniel Ackerman ◽  
Terence P. Gade ◽  
...  

ABSTRACTExisting drug therapies for hepatocellular carcinoma (HCC), including sorafenib, extend patient survival by only three months. We sought to identify novel druggable targets for use in combination with sorafenib to increase its efficacy. We implemented an in vivo genetic screening paradigm utilizing a library of 43 genes-of-interest expressed in the context of repopulation of the injured livers of Fumarylacetoacetate Hydrolase-deficient (Fah−/−) mice, which led to highly penetrant HCC. We then treated mice with vehicle or sorafenib to discover genetic determinants of sensitivity and resistance. Liver X Receptor alpha (LXRα) emerged as a potential target. To examine LXRα agonism in combination with sorafenib treatment, we added varying concentrations of sorafenib and LXRα agonist drugs to HCC cell lines. We performed transcriptomic analysis to elucidate the mechanisms of HCC death. Fah−/− mice injected with the screening library developed HCC tumor clones containing Myc cDNA plus various other cDNAs. Treatment with sorafenib resulted in sorafenib-resistant HCCs that were significantly depleted in Nr1h3 cDNA, encoding LXRα, suggesting that LXRα activation is incompatible with tumor growth in the presence of sorafenib treatment in vivo. The combination of sorafenib and LXR agonism led to enhanced cell death as compared to monotherapy in multiple HCC cell lines, due to reduced expression of cell cycle regulators and increased expression of genes associated with apoptosis. Combination therapy also enhanced cell death in a sorafenib-resistant primary human HCC cell line. Our novel in vivo screen led to the discovery that LXR agonist drugs potentiate the efficacy of sorafenib in treating HCC.

Gut ◽  
2019 ◽  
Vol 69 (4) ◽  
pp. 727-736 ◽  
Author(s):  
Cun Wang ◽  
Hui Wang ◽  
Cor Lieftink ◽  
Aimee du Chatinier ◽  
Dongmei Gao ◽  
...  

ObjectivesHepatocellular carcinoma (HCC) is one of the most frequent malignancies and a major leading cause of cancer-related deaths worldwide. Several therapeutic options like sorafenib and regorafenib provide only modest survival benefit to patients with HCC. This study aims to identify novel druggable candidate genes for patients with HCC.DesignA non-biased CRISPR (clustered regularly interspaced short palindromic repeats) loss-of-function genetic screen targeting all known human kinases was performed to identify vulnerabilities of HCC cells. Whole-transcriptome sequencing (RNA-Seq) and bioinformatics analyses were performed to explore the mechanisms of the action of a cyclin-dependent kinase 12 (CDK12) inhibitor in HCC cells. Multiple in vitro and in vivo assays were used to study the synergistic effects of the combination of CDK12 inhibition and sorafenib.ResultsWe identify CDK12 as critically required for most HCC cell lines. Suppression of CDK12 using short hairpin RNAs (shRNAs) or its inhibition by the covalent small molecule inhibitor THZ531 leads to robust proliferation inhibition. THZ531 preferentially suppresses the expression of DNA repair-related genes and induces strong DNA damage response in HCC cell lines. The combination of THZ531 and sorafenib shows striking synergy by inducing apoptosis or senescence in HCC cells. The synergy between THZ531 and sorafenib may derive from the notion that THZ531 impairs the adaptive responses of HCC cells induced by sorafenib treatment.ConclusionOur data highlight the potential of CDK12 as a drug target for patients with HCC. The striking synergy of THZ531 and sorafenib suggests a potential combination therapy for this difficult to treat cancer.


2021 ◽  
Author(s):  
BiSha Ding ◽  
Chang Bao ◽  
Luqi Jin ◽  
Liang Xu ◽  
Zhijun Dai ◽  
...  

Abstract Background: Advanced hepatocellular carcinoma (HCC) patients usually fail to be treated because of drug resistance, including sorafenib. Methods: The expression and prognostic role of calcium/calmodulin-dependent serine protein kinase (CASK) in HCC were assessed by combination of bioinformatic analysis and experimental validation. The effects of CASK in regulating proliferation, apoptosis and drug resistance of HCC cells in vitro and in vivo were investigated using gain- or loss-of-function strategies by performing lots of specific methods including Cell Counting kit-8 (CCK8), colony formation assay, flow cytometry, transmission electron microscopy, immunofluorescent confocal laser microscopy and tumor xenograft experiments, immunohistochemistry staining. Moreover, the underlying molecular mechanisms responsible for CASK’s functions in HCC were also explored. Results: Currently, we discovered that CASK was positively associated with sorafenib resistance of HCC in vitro and in vivo, and was significantly related with poor prognosis in HCC. Moreover, inhibition of CASK can increase the effect of sorafenib partially by promoting apoptosis and autophagy, while CASK overexpression presented the opposite results. Besides, all the pan-caspase inhibitor Z-VAD-FMK, autophagy inhibitor 3-Methyladenine (3-MA) and small interfering RNA (siRNA) of LC3B reversed CASK knockout-induced effects with sorafenib treatment, suggesting that both apoptosis and autophagy were involved in CASK-mediated above functions and autophagy played a pro-death role in this research. Intriguingly, similar results were observed in vivo. In molecular level, CASK knockout activated the c-Jun N-terminal kinase (JNK) pathway, and treatment with JNK inhibitor SP600125 or transiently transfected with si-JNK significantly attenuated CASK knockout-mediated autophagic cell death. Besides, knockout of CASK dramatically inhibited the expression of ATP binding cassette subfamily G member 2 (ABCG2) and reversed of multidrug-resistance (MDR) of HCC. Conclusions: Collectively, all these results together indicated that CASK might be a promising biomarker for HCC patients and a potential therapeutic target for relieving drug resistance of HCC.


2012 ◽  
Vol 30 (15_suppl) ◽  
pp. 3061-3061
Author(s):  
Michele Baglioni ◽  
Catia Giovannini ◽  
Laura Gramantieri ◽  
Marco Baron Toaldo ◽  
Cristiano Ventrucci ◽  
...  

3061 Background: Sorafenib is the only approved drug for the treatment of the advanced stage of HCC. Although its efficacy has been proven with randomized clinical trials, the clinical benefit seen in overall survival for advanced HCC patients treated with sorafenib could be improved. New molecules or combination of novel targeted agents to improve sorafenib efficacy for advanced stage HCC patients are needed. Notch genes are a family of receptors involved in many cell fate regulations, their expression has been found altered in many tumors, including HCC. The aim of this study was to study the combination of sorafenib and Notch3 signaling inhibition to improve sorafenib’s therapeutic effect. Methods: HepG2 and Huh7 cellular models were used for Notch3 stable silencing by retroviral introduction of specific interfering RNAs Xenograft models in both Notch3 stable shRNA cell lines have been developed using NOD/SCID mice. Animals bearing tumors were treated with 60 mg/kg of sorafenib for 21 consecutive days. Notch3, p21 and pGSK3βSer9 protein expression were also analyzed in 20 human HCCs. Results: Notch3 silencing (shN3) in HuH7 and HepG2 cell lines treated with sorafenib showed an increase in cell death (3.8 to 5 fold increase) when shN3 cell lines were compared with their relative controls (GL2). A difference in tumor growth was observed between GL2 negative control vs shN3 xenografts in both HepG2 and Huh7 after 21 days of sorafenib treatment. Two tailed student’s t test (shN3 vs GL2) P=0,04 and P=0,01 for Huh7 and HepG2 respectively. Molecular investigations have shown the involvement of p21 and GSK3β in the enhanced response to sorafenib in Notch 3 silenced models. A significant inverse correlation between Notch3 and pGSK3βSer9 proteins accumulation (Spearman ρ= -0.666) (p < 0.01) and a direct correlation between Notch3 and p21 proteins expression (Spearman ρ= 0.681) (p < 0.01) was found in HCC samples obtained from patients. Conclusion: Our preclincal findings outline the effect of combined Notch3 inhibition and sorafenib. The molecular mechanisms responsible for sorafenib induced cell death associated with Notch3 silencing relays on inhibition of p21/CDKN1A and GSK3βSer9. This study is supported by a grant from Bayer Healthcare, Italy.


2021 ◽  
Author(s):  
Danyang Li ◽  
Yingcheng Yao ◽  
Yuhan Rao ◽  
Xinyu Huang ◽  
Li Wei ◽  
...  

Abstract Background: Hepatocellular carcinoma (HCC) is one of the most malignant tumors and the fourth leading cause of cancer-related death worldwide. Sorafenib is currently acknowledged as a standard therapy for advanced HCC. However, acquired resistance substantially limits the clinical efficacy of sorafenib. Therefore, further investigations of the associated risk factors are highly warranted.Methods: We analysed a group of 78 HCC patients who received sorafenib treatment after liver resection surgery. The expression of SCAP and its correlation with sorafenib resistance in HCC clinical samples were determined by immunohistochemical analyses. Overexpression and knockdown approaches in vitro were used to characterize the functional roles of SCAP in regulating sorafenib resistance. The effects of SCAP inhibition in HCC cell lines were analysed in proliferation, apoptosis, and colony formation assays. Autophagic regulation by SCAP was assessed by immunoblotting, immunofluorescence and immunoprecipitation assays. The combinatorial effect of a SCAP inhibitor and sorafenib was tested using nude mice.Results: Hypercholesterolemia was associated with sorafenib resistance in HCC treatment. The degree of sorafenib resistance was correlated with the expression of the cholesterol sensor SCAP and consequent deposition of cholesterol. SCAP is overexpressed in HCC tissues and hepatocellular carcinoma cell lines with sorafenib resistance, while SCAP inhibition could improve sorafenib sensitivity in sorafenib-resistant HCC cells. Furthermore, we found that SCAP-mediated sorafenib resistance was related to decreased autophagy, which was connected to decreased AMPK activity. A clinically significant finding was that lycorine, a specific SCAP inhibitor, could reverse acquired resistance to sorafenib in vitro and in vivo.Conclusions: SCAP contributes to sorafenib resistance through AMPK-mediated autophagic regulation. The combination of sorafenib and SCAP targeted therapy provides a novel personalized treatment to enhance sensitivity in sorafenib-resistant HCC.


Author(s):  
He Zhu ◽  
Hongwei Zhang ◽  
Youliang Pei ◽  
Zhibin Liao ◽  
Furong Liu ◽  
...  

Abstract Background Hepatocellular carcinoma (HCC) is a common type of malignant human cancer with high morbidity and poor prognosis, causing numerous deaths per year worldwide. Growing evidence has been demonstrated that long non-coding RNAs (lncRNAs) are closely associated with hepatocarcinogenesis and metastasis. However, the roles, functions, and working mechanisms of most lncRNAs in HCC remain poorly defined. Methods Real-time quantitative polymerase chain reaction (qRT-PCR) was used to detect the expression level of CCDC183-AS1 in HCC tissues and cell lines. Cell proliferation, migration and invasion ability were evaluated by CCK-8 and transwell assay, respectively. Animal experiments were used to explore the role of CCDC183-AS1 and miR-589-5p in vivo. Bioinformatic analysis, dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were performed to confirm the regulatory relationship between CCDC183-AS1, miR-589-5p and SKP1. Results Significantly upregulated expression of CCDC183-AS1 was observed in both HCC tissues and cell lines. HCC patients with higher expression of CCDC183-AS1 had a poorer overall survival rate. Functionally, overexpression of CCDC183-AS1 markedly promoted HCC cell proliferation, migration and invasion in vitro and tumor growth and metastasis in vivo, whereas the downregulation of CCDC183-AS1 exerted opposite effects. MiR-589-5p inhibitor counteracted the proliferation, migration and invasion inhibitory effects induced by CCDC183-AS1 silencing. Mechanistically, CCDC183-AS1 acted as a ceRNA through sponging miR-589-5p to offset its inhibitory effect on the target gene SKP1, then promoted the tumorigenesis of HCC. Conclusions CCDC183-AS1 functions as an oncogene to promote HCC progression through the CCDC183-AS1/miR-589-5p/SKP1 axis. Our study provided a novel potential therapeutic target for HCC patients.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jiantao Wang ◽  
Jinbiao Che

Abstract Background Hepatocellular carcinoma (HCC) is the leading cause of tumor-related death worldwide due to high morbidity and mortality, yet lacking effective biomarkers and therapies. Circular RNAs (circRNAs) are a group of non-coding RNAs that regulate gene expression through interacting with miRNAs, implicating in the tumorigenesis and progression. A novel circRNA, circTP63, was reported to be an oncogene in HCC. However, its role in HCC remains unclear. Methods qRT-PCR was used to assess the mRNA levels of CircTP63 in 90 pairs of tumor and adjacent normal tissues from HCC patients, one human normal hepatic epithelial cell line and HCC cell lines. CCK-8, colony formation, transwell, and flow cytometry assays were performed to detect the cellular function of circTP63/miR-155-5p/ZBTB18 in HCC cells. HCC xenograft mice models were established to assess the in vivo effect of circTP63. Bioinformatic analysis, RNA pull-down and luciferase assays were used to determine the interaction among circTP63/miR-155-5p/ZBTB18. Results circTP63 was significantly upregulated in HCC tissues and cell lines. High circTP63 expression is closely associated with the tumor stages, lymph node metastasis, and poor prognosis of HCC patients. Functionally, knockdown of circTP63 inhibited cell proliferation, migration, invasion, and promoted cell apoptosis of HCC. Meanwhile, overexpression of circTP63 enhanced HCC progression. Mechanically, circTP63 was a sponge of miR-155-5p to facilitate the ZBTB18 expression, and the ZBTB18 expression in HCC tissues was negatively associated with the survival rate of HCC patients. Furthermore, rescued assays revealed that the reduced tumor-promoting effect on HCC cells induced by knockdown of circTP63 can be reversed by miR-155-5p inhibitor or ZBTB18 overexpression. Conclusion Our data highlight a critical circTP63-miR-155-5p-ZBTB18 regulatory network involved in the HCC progression, gaining mechanistic insights into the function of circRNAs in HCC progression, and providing effective biomarkers and therapeutic targets for HCC treatment.


2021 ◽  
Vol 22 (8) ◽  
pp. 3956
Author(s):  
Yan Li ◽  
Tianyu Tang ◽  
Hae June Lee ◽  
Kiwon Song

Hepatocellular carcinoma (HCC) is a major histological subtype of primary liver cancer. Ample evidence suggests that the pathological properties of HCC originate from hepatic cancer stem cells (CSCs), which are responsible for carcinogenesis, recurrence, and drug resistance. Cold atmospheric-pressure plasma (CAP) and plasma-activated medium (PAM) induce apoptosis in cancer cells and represent novel and powerful anti-cancer agents. This study aimed to determine the anti-cancer effect of CAP and PAM in HCC cell lines with CSC characteristics. We showed that the air-based CAP and PAM selectively induced cell death in Hep3B and Huh7 cells with CSC characteristics, but not in the normal liver cell line, MIHA. We observed both caspase-dependent and -independent cell death in the PAM-treated HCC cell lines. Moreover, we determined whether combinatorial PAM therapy with various anti-cancer agents have an additive effect on cell death in Huh7. We found that PAM highly increased the efficacy of the chemotherapeutic agent, cisplatin, while enhanced the anti-cancer effect of doxorubicin and the targeted-therapy drugs, trametinib and sorafenib to a lesser extent. These findings support the application of CAP and PAM as anti-cancer agents to induce selective cell death in cancers containing CSCs, suggesting that the combinatorial use of PAM and some specific anti-cancer agents is complemented mechanistically.


2020 ◽  
Author(s):  
zhichao xue ◽  
Vivian Wai Yan Lui ◽  
Yongshu Li ◽  
Jia Lin ◽  
Chanping You ◽  
...  

Abstract Background: Recent genomic analyses revealed that druggable molecule targets were detectable in approximately 6% of patients with nasopharyngeal carcinoma (NPC). However, a dependency on dysregulated CDK4/6–cyclinD1 pathway signaling is an essential event in the pathogenesis of NPC. In this study, we aimed to evaluate the therapeutic efficacy of a specific CDK4/6 inhibitor, palbociclib, and its compatibility with other chemotherapeutic drugs for the treatment of NPC by using newly established xenograft models and cell lines derived from primary, recurrent, and metastatic NPC. Methods: We evaluated the efficacies of palbociclib monotherapy and concurrent treatment with palbociclib and cisplatin or suberanilohydroxamic acid (SAHA) in NPC cell lines and xenograft models. RNA sequencing was then used to profile the drug response–related pathways. Palbociclib-resistant NPC cell lines were established to determine the potential use of cisplatin as a second-line treatment after the development of palbociclib resistance. We further examined the efficacy of palbociclib treatment against cisplatin-resistant NPC cells. Results: In NPC cells, palbociclib monotherapy was confirmed to induce cell cycle arrest in the G1 phase in vitro . Palbociclib monotherapy also had significant inhibitory effects in all six tested NPC tumor models in vivo , as indicated by substantial reductions in the total tumor volumes and in Ki-67 proliferation marker expression. In NPC cells, concurrent palbociclib treatment mitigated the cytotoxic effect of cisplatin in vitro . Notably, concurrent treatment with palbociclib and SAHA synergistically promoted NPC cell death both in vitro and in vivo . This combination also further inhibited tumor growth by inducing autophagy-associated cell death. NPC cell lines with induced palbociclib or cisplatin resistance remained sensitive to treatment with cisplatin or palbociclib, respectively. Conclusions: Our study findings provide essential support for the use of palbociclib as an alternative therapy for NPC and increase awareness of the effective timing of palbociclib administration with other chemotherapeutic drugs. Our results provide a foundation for the design of first-in-human clinical trials of palbociclib regimens in patients with NPC.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 302-302 ◽  
Author(s):  
Fiona Brown ◽  
Yang Zhang ◽  
Claire Hinterschied ◽  
Alexander Prouty ◽  
Shelby Sloan ◽  
...  

Mantle cell lymphoma (MCL) is an incurable B cell malignancy, defined by the t(11;14) translocation and comprises 3-6% of non-Hodgkin lymphomas diagnosed annually. MCL is associated with a poor prognosis due to emergence of resistance to immuno-chemotherapy and targeted agents. Due to the late median age of diagnosis, aggressive chemotherapy and stem cell transplantation are often not realistic options. The average overall survival of patients with MCL is 5 years and for the majority of patients who progress on targeted agents like ibrutinib, survival remains at a dismal 3-8 months. There is a major unmet need to identify new therapeutic approaches that are well tolerated by elderly patients to improve treatment outcomes and quality of life. Our group has identified the type II protein arginine methyltransferase enzyme, PRMT5, to be dysregulated in MCL and to promote growth and survival by supporting the cell cycle, PRC2 activity, and signaling via the BCR and PI3K/AKT pathways. We have developed first-in-class selective inhibitors of PRMT5 and, in collaboration with Prelude Therapeutics, we have demonstrated that novel SAM-competitive PRMT5 inhibitors provide potent anti-tumor activity in aggressive preclinical models of human MCL. Selective inhibition of PRMT5 in these models and MCL cell lines leads to disruption of constitutive PI3K/AKT signaling, dephosphorylation and nuclear translocation of FOXO1, and enhanced recruitment of this tumor suppressor protein to chromatin. We identified 136 newly emerged FOXO1-bound genomic loci following 48 hours of PRMT5 inhibition in the CCMCL1 MCL line by performing chromatin immunoprecipitation-seq analysis. These genes were markedly upregulated in CCMCL1 cells treated with the PRMT5 inhibitor PRT382 as determined by RNA-seq analysis. Among those genes, we identified and confirmed FOXO1 recruitment to the promoter of BAX, a pro-apoptotic member of the BCL2 family of proteins. Treatment of MCL cell lines (Granta-519, CCMCL1, Z-138, and SEFA) with the selective PRMT5 inhibitor PRT382 (10, 100nM) led to upregulation of BAX protein levels and induction of programmed cell death as measured by annexin V/PI staining and flow cytometry. We hypothesized that induction of BAX would trigger a therapeutic vulnerability to the BCL2 inhibitor venetoclax, and that combination PRMT5/BCL2 inhibitor therapy would drive synergistic cell death in MCL. Single agent and combination treatment with venetoclax and PRT382 was performed in eight MCL lines including a new cell line generated from our ibrutinib-refractory PDX model (SEFA) and IC50 and synergy scores were calculated. The Z-138 line was most sensitive to venetoclax (IC50&lt;10nM) while CCMCL-1, SP53, JeKo-1, and Granta-519 demonstrated relative resistance (IC50&gt;1uM). All lines reached an IC50 &lt;1uM when co-treated with PRT382, with IC50 values ranging from 20 - 500nM. Combination treatments showed high levels of synergy (scores &gt; 20) in 4 lines and moderate synergy (scores 10-20) in 2 lines. The two lines with the highest levels of synergy, Z-138 and SEFA, express high levels of BCL-2 and are Ibrutinib resistant. Overall there was a strong positive correlation between BCL2 expression and synergy score (r=0.707), and no correlation between PRMT5 expression and synergy score (r=0.084). In vivo evaluation in two preclinical MCL models (Granta-519 NSG mouse flank and an ibrutinib-resistant MCL PDX) showed therapeutic synergy with combination venetoclax/PRT382 treatment. In both models, mice were treated with sub-therapeutic doses of venetoclax and/or PRT543 (Granta) or PRT382 (IR-MCL PDX) and tumor burden assessed weekly via flank mass measurement (Granta) or flow cytometry (IR-MCL-PDX). Combination treatment with well-tolerated doses of venetoclax and PRMT5 inhibitors in both MCL in vivo models showed synergistic anti-tumor activity without evidence of toxicity. This preclinical data provides mechanistic rationale while demonstrating therapeutic synergy and lack of toxicity in this preclinical study and justifies further consideration of this combination strategy targeting PRMT5 and BCL2 in MCL in the clinical setting. PRT543, a selective PRMT5 inhibitor, has been advanced into clinical studies for the treatment of patients with solid tumors and hematologic malignancies, including MCL (NCT03886831). Disclosures Zhang: Prelude Therapeutics: Employment. Vaddi:Prelude Therapeutics: Employment. Scherle:Prelude Therapeutics: Employment. Baiocchi:Prelude: Consultancy.


2020 ◽  
Author(s):  
Jiantao Wang ◽  
Jinbiao Che

Abstract Background: Hepatocellular carcinoma (HCC) is the leading cause of tumor-related death worldwide due to high morbidity and mortality, yet lacking effective biomarkers and therapies. Circular RNAs (circRNAs) are a group of non-coding RNAs that regulate gene expression through interacting with miRNAs, implicating in the tumorigenesis and progression. A novel circRNA, circTP63, was reported to be an oncogene in HCC. However, its role in HCC remains unclear.Methods: qRT-PCR was used to assess the mRNA levels of CircTP63 in 90 pairs of tumor and adjacent normal tissues from HCC patients, one human normal hepatic epithelial cell line and HCC cell lines. CCK-8, colony formation, transwell, and flow cytometry assays were performed to detect the cellular function of circTP63/miR-155-5p/ZBTB18 in HCC cells. HCC xenograft mice models were established to assess the in vivo effect of circTP63. Bioinformatic analysis, RNA pull-down and luciferase assays were used to determine the interaction among circTP63/miR-155-5p/ZBTB18.Results: circTP63 was significantly upregulated in HCC tissues and cell lines. High circTP63 expression is closely associated with the tumor stages, lymph node metastasis, and poor prognosis of HCC patients. Functionally, knockdown of circTP63 inhibited cell proliferation, migration, invasion, and promoted cell apoptosis of HCC. Meanwhile, overexpression of circTP63 enhanced HCC progression. Mechanically, circTP63 was a sponge of miR-155-5p to facilitate the ZBTB18 expression, and the ZBTB18 expression in HCC tissues was negatively associated with the survival rate of HCC patients. Furthermore, rescued assays revealed that the reduced tumor-promoting effect on HCC cells induced by knockdown of circTP63 can be reversed by miR-155-5p inhibitor or ZBTB18 overexpression.Conclusion: Our data highlight a critical circTP63-miR-155-5p-ZBTB18 regulatory network involved in the HCC progression, gaining mechanistic insights into the function of circRNAs in HCC progression, and providing effective biomarkers and therapeutic targets for HCC treatment.


Sign in / Sign up

Export Citation Format

Share Document