scholarly journals From reporters to endogenous genes: the impact of the first five codons on translation efficiency in Escherichia coli

2019 ◽  
Author(s):  
Mariana H. Moreira ◽  
Géssica C. Barros ◽  
Rodrigo D. Requião ◽  
Silvana Rossetto ◽  
Tatiana Domitrovic ◽  
...  

ABSTRACTTranslation initiation is a critical step in the regulation of protein synthesis, and it is subjected to different control mechanisms, such as 5’ UTR secondary structure and initiation codon context, that can influence the rates at which initiation and consequentially translation occur. For some genes, translation elongation also affects the rate of protein synthesis. With a GFP library containing nearly all possible combinations of nucleotides from the 3rd to the 5th codon positions in the protein coding region of the mRNA, it was previously demonstrated that some nucleotide combinations increased GFP expression up to four orders of magnitude. While it is clear that the codon region from positions 3 to 5 can influence protein expression levels of artificial constructs, its impact on endogenous proteins is still unknown. Through bioinformatics analysis, we identified the nucleotide combinations of the GFP library in Escherichia coli genes and examined the correlation between the expected levels of translation according to the GFP data with the experimental measures of protein expression. We observed that E. coli genes were enriched with the nucleotide compositions that enhanced protein expression in the GFP library, but surprisingly, it seemed to affect the translation efficiency only marginally. Nevertheless, our data indicate that different enterobacteria present similar nucleotide composition enrichment as E. coli, suggesting an evolutionary pressure towards the conservation of short translational enhancer sequences.

2016 ◽  
Author(s):  
Linlin Zhao ◽  
Nima Abedpour ◽  
Christopher Blum ◽  
Petra Kolkhof ◽  
Mathias Beller ◽  
...  

Motivation: The accurate characterization of the translational mechanism is crucial for enhancing our understanding of the relationship between genotype and phenotype. In particular, predicting the impact of the genetic variants on gene expression will allow to optimize specific pathways and functions for engineering new biological systems. In this context, the development of accurate methods for predicting translation efficiency from the nucleotide sequence is a key challenge in computational biology. Methods: In this work we present PGExpress, a binary classifier to discriminate between mRNA sequences with low and high translation efficiency in E. coli. PGExpress algorithm takes as input 12 features corresponding to RNA folding and anti-Shine-Dalgarno hybridization free energies. The method was trained on a set of 1,772 sequence variants (WT-High) of 137 essential E. coli genes. For each gene, we considered 13 sequence variants of the first 33 nucleotides encoding for the same amino acids followed by the superfolder GFP. Each gene variant is represented sequence blocks that include the Ribosome Binding Site (RBS), the first 33 nucleotides of the coding region (C33), the remaining part of the coding region (CC), and their combinations. Results: Our logistic regression-based tool (PGExpress) was trained using a 20-fold gene-based cross-validation procedure on the WT-High dataset. In this test PGExpress achieved an overall accu-racy of 74%, a Matthews correlation coefficient 0.49 and an Area Under the Receiver Operating Characteristic Curve (AUC) of 0.81. Tested on 3 sets of sequences with different Ribosome Binding Sites, PGExpress reaches similar AUC. Finally, we validated our method by performing in-house experiments on five newly generated mRNA sequence variants. The predictions of the expression level of the new variants are in agreement with our experimental results in E. coli.


2021 ◽  
Vol 14 ◽  
pp. 117863612110246
Author(s):  
Cheuk Yin Lai ◽  
Ka Lun Ng ◽  
Hao Wang ◽  
Chui Chi Lam ◽  
Wan Keung Raymond Wong

CenA is an endoglucanase secreted by the Gram-positive cellulolytic bacterium, Cellulomonas fimi, to the environment as a glycosylated protein. The role of glycosylation in CenA is unclear. However, it seems not crucial for functional activity and secretion since the unglycosylated counterpart, recombinant CenA (rCenA), is both bioactive and secretable in Escherichia coli. Using a systematic screening approach, we have demonstrated that rCenA is subjected to spontaneous cleavages (SC) in both the cytoplasm and culture medium of E. coli, under the influence of different environmental factors. The cleavages were found to occur in both the cellulose-binding (CellBD) and catalytic domains, with a notably higher occurring rate detected in the former than the latter. In CellBD, the cleavages were shown to occur close to potential N-linked glycosylation sites, suggesting that these sites might serve as ‘attributive tags’ for differentiating rCenA from endogenous proteins and the points of initiation of SC. It is hypothesized that glycosylation plays a crucial role in protecting CenA from SC when interacting with cellulose in the environment. Subsequent to hydrolysis, SC would ensure the dissociation of CenA from the enzyme-substrate complex. Thus, our findings may help elucidate the mechanisms of protein turnover and enzymatic cellulolysis.


Proteomes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 16
Author(s):  
Shomeek Chowdhury ◽  
Stephen Hepper ◽  
Mudassir K. Lodi ◽  
Milton H. Saier ◽  
Peter Uetz

Glycolysis is regulated by numerous mechanisms including allosteric regulation, post-translational modification or protein-protein interactions (PPI). While glycolytic enzymes have been found to interact with hundreds of proteins, the impact of only some of these PPIs on glycolysis is well understood. Here we investigate which of these interactions may affect glycolysis in E. coli and possibly across numerous other bacteria, based on the stoichiometry of interacting protein pairs (from proteomic studies) and their conservation across bacteria. We present a list of 339 protein-protein interactions involving glycolytic enzymes but predict that ~70% of glycolytic interactors are not present in adequate amounts to have a significant impact on glycolysis. Finally, we identify a conserved but uncharacterized subset of interactions that are likely to affect glycolysis and deserve further study.


Author(s):  
Fatemeh Sadat Javadian ◽  
Majid Basafa ◽  
Aidin Behravan ◽  
Atieh Hashemi

Abstract Background Overexpression of the EpCAM (epithelial cell adhesion molecule) in malignancies makes it an attractive target for passive immunotherapy in a wide range of carcinomas. In comparison with full-length antibodies, due to the small size, the scFvs (single-chain variable fragments) are more suitable for recombinant expression in E. coli (Escherichia coli). However, the proteins expressed in large amounts in E. coli tend to form inclusion bodies that need to be refolded which may result in poor recovery of bioactive proteins. Various engineered strains were shown to be able to alleviate the insolubility problem. Here, we studied the impact of four E. coli strains on the soluble level of anti-EpEX-scFv (anti-EpCAM extracellular domain-scFv) protein. Results Although results showed that the amount of soluble anti-EpEX-scFv obtained in BL21TM (DE3) (114.22 ± 3.47 mg/L) was significantly higher to those produced in the same condition in E. coli RosettaTM (DE3) (71.39 ± 0.31 mg/L), and OrigamiTM T7 (58.99 ± 0.44 mg/L) strains, it was not significantly different from that produced by E. coli SHuffleTM T7 (108.87 ± 2.71 mg/L). Furthermore, the highest volumetric productivity of protein reached 318.29 ± 26.38 mg/L in BL21TM (DE3). Conclusions Although BL21TM (DE3) can be a suitable strain for high-level production of anti-EpEX-scFv protein, due to higher solubility yield (about 55%), E. coli SHuffleTM T7 seems to be better candidate for soluble production of scfv compared to BL21TM (DE3) (solubility yield of about 30%).


2008 ◽  
Vol 74 (10) ◽  
pp. 3138-3142 ◽  
Author(s):  
Haiping Li ◽  
Mehrdad Tajkarimi ◽  
Bennie I. Osburn

ABSTRACT Vacuum cooling is a common practice in the California leafy green industry. This study addressed the impact of vacuum cooling on the infiltration of Escherichia coli O157:H7 into lettuce as part of the risk assessment responding to the E. coli O157:H7 outbreaks associated with leafy green produce from California. Vacuum cooling significantly increased the infiltration of E. coli O157:H7 into the lettuce tissue (2.65E+06 CFU/g) compared to the nonvacuumed condition (1.98E+05 CFU/g). A stringent surface sterilization and quadruple washing could not eliminate the internalized bacteria from lettuce. It appeared that vacuuming forcibly changed the structure of lettuce tissue such as the stomata, suggesting a possible mechanism of E. coli O157:H7 internalization. Vacuuming also caused a lower reduction rate of E. coli O157:H7 in stored lettuce leaves than that for the nonvacuumed condition.


2015 ◽  
Vol 59 (4) ◽  
pp. 1962-1968 ◽  
Author(s):  
Sun Hee Park ◽  
Su-Mi Choi ◽  
Dong-Gun Lee ◽  
Sung-Yeon Cho ◽  
Hyo-Jin Lee ◽  
...  

ABSTRACTExtended-spectrum β-lactamase-producingEscherichia coli(ESBL-EC) is increasingly identified as a cause of acute pyelonephritis (APN) among patients without recent health care contact, i.e., community-associated APN. This case-control study compared 75 cases of community-associated ESBL-EC APN (CA-ESBL) to 225 controls of community-associated non-ESBL-EC APN (CA-non-ESBL) to identify the risk factors for ESBL-EC acquisition and investigate the impact of ESBL on the treatment outcomes of community-associated APN (CA-APN) caused byE. coliat a Korean hospital during 2007 to 2013. The baseline characteristics were similar between the cases and controls; the risk factors for ESBL-EC were age (>55 years), antibiotic use within the previous year, and diabetes with recurrent APN. The severity of illness did not differ between CA-ESBL and CA-non-ESBL (Acute Physiology and Chronic Health Evaluation [APACHE] II scores [mean ± standard deviation], 7.7 ± 5.9 versus 6.4 ± 5.3;P= 0.071). The proportions of clinical (odds ratio [OR], 1.76; 95% confidence interval [CI], 0.57 to 5.38;P= 0.323) and microbiological (OR, 1.16; 95% CI, 0.51 to 2.65;P= 0.730) cures were similar, although the CA-ESBL APN patients were less likely to receive appropriate antibiotics within 48 h. A multivariable Cox proportional hazards analysis of the prognostic factors for CA-APN caused byE. colishowed that ESBL production was not a significant factor for clinical (hazard ratio [HR], 0.39; 95% CI, 0.12 to 1.30;P= 0.126) or microbiological (HR, 0.49; 95% CI, 0.21 to 1.12;P= 0.091) failure. The estimates did not change after incorporating weights calculated using propensity scores for acquiring ESBL-EC. Therefore, ESBL production did not negatively affect treatment outcomes among patients with community-associatedE. coliAPN.


2020 ◽  
Vol 4 (3) ◽  
pp. 323-327
Author(s):  
Mamunu Abdulkadir SULAIMAN ◽  
H.S Muhammad ◽  
Aliyu Muhammad Sani ◽  
Aminu Ibrahim ◽  
Ibrahim Muhammad Hussain ◽  
...  

Multidrug resistance (MDR) exhibited by some strains of Escherichia coli may be due to acquiring mobile genetic element (R-plasmid) by the bacteria, or intrinsically induced by inappropriate use of antibiotics by the hosts.  Infection by such strains may result to prolonged illness and greater risk of death. The study evaluated the impact of curing on antibiotic resistance on selected clinical isolates of E. coli. Twenty clinical isolates of E. coli from our previous studies were re-characterized using conventional microbiological techniques. Antibiotic sensitivity testing was determined by disk diffusion method, MDR selected based on resistance to ≥ 2 classes of antibiotics. Multiple antibiotic resistance (MAR) index was determined as ratio of the number of antibiotic resisted to the total number of antibiotics tested and considered significant if ≥. 0.2. The isolates that showed significant MAR index were subjected to plasmid curing using acridine orange, thereafter, profiled for plasmid and the cured ones were re-tested against the antibiotics they initially resisted. Out of the 20 isolates, 19 (95%) were confirmed as E. coli, all (100%) of which were MDRs, which was highest against augmentin (78.9%) followed by amoxacillin (52.6%). However, after the plasmid curing only 6 (31.6%) out of the 19 isolates cured retained significant MAR index and the level of the significance had reduced drastically in 16 (84.2%) isolates. Conclusively, curing assay can completely eliminate R-plasmid acquired resistance. More studied on plasmid curing agents for possible augmentation of the agents into antibiotics may see the rise of successful antibiotic era again.


Foods ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2154
Author(s):  
Shamil Rafeeq ◽  
Reza Ovissipour

Removing foodborne pathogens from food surfaces and inactivating them in wash water are critical steps for reducing the number of foodborne illnesses. In this study we evaluated the impact of surfactants on enhancing nanobubbles’ efficacy on Escherichia coli O157:H7, and Listeria innocua removal from spinach leaves. We evaluated the synergistic impact of nanobubbles and ultrasound on these two pathogens inactivation in the cell suspension. The results indicated that nanobubbles or ultrasound alone could not significantly reduce bacteria in cell suspension after 15 min. However, a combination of nanobubbles and ultrasonication caused more than 6 log cfu/mL reduction after 15 min, and 7 log cfu/mL reduction after 10 min of L. innocua and E. coli, respectively. Nanobubbles also enhanced bacterial removal from spinach surface in combination with ultrasonication. Nanobubbles with ultrasound removed more than 2 and 4 log cfu/cm2 of L. innocua and E. coli, respectively, while ultrasound alone caused 0.5 and 1 log cfu/cm2 of L. innocua and E. coli reduction, respectively. No reduction was observed in the solutions with PBS and nanobubbles. Adding food-grade surfactants (0.1% Sodium dodecyl sulfate-SDS, and 0.1% Tween 20), did not significantly enhance nanobubbles efficacy on bacterial removal from spinach surface.


2014 ◽  
Vol 80 (12) ◽  
pp. 3656-3666 ◽  
Author(s):  
Basanta Kumar Biswal ◽  
Ramzi Khairallah ◽  
Kareem Bibi ◽  
Alberto Mazza ◽  
Ronald Gehr ◽  
...  

ABSTRACTWastewater discharges may increase the populations of pathogens, includingEscherichia coli, and of antimicrobial-resistant strains in receiving waters. This study investigated the impact of UV and peracetic acid (PAA) disinfection on the prevalence of virulence and antimicrobial resistance genes in uropathogenicEscherichia coli(UPEC), the most abundantE. colipathotype in municipal wastewaters. Laboratory disinfection experiments were conducted on wastewater treated by physicochemical, activated sludge, or biofiltration processes; 1,766E. coliisolates were obtained for the evaluation. The target disinfection level was 200 CFU/100 ml, resulting in UV and PAA doses of 7 to 30 mJ/cm2and 0.9 to 2.0 mg/liter, respectively. The proportions of UPECs were reduced in all samples after disinfection, with an average reduction by UV of 55% (range, 22% to 80%) and by PAA of 52% (range, 11% to 100%). Analysis of urovirulence genes revealed that the decline in the UPEC populations was not associated with any particular virulence factor. A positive association was found between the occurrence of urovirulence and antimicrobial resistance genes (ARGs). However, the changes in the prevalence of ARGs in potential UPECs were different following disinfection, i.e., UV appears to have had no effect, while PAA significantly reduced the ARG levels. Thus, this study showed that both UV and PAA disinfections reduced the proportion of UPECs and that PAA disinfection also reduced the proportion of antimicrobial resistance gene-carrying UPEC pathotypes in municipal wastewaters.


2015 ◽  
Vol 81 (10) ◽  
pp. 3561-3570 ◽  
Author(s):  
Timothy J. Johnson ◽  
Randall S. Singer ◽  
Richard E. Isaacson ◽  
Jessica L. Danzeisen ◽  
Kevin Lang ◽  
...  

ABSTRACTIncA/C plasmids are broad-host-range plasmids enabling multidrug resistance that have emerged worldwide among bacterial pathogens of humans and animals. Although antibiotic usage is suspected to be a driving force in the emergence of such strains, few studies have examined the impact of different types of antibiotic administration on the selection of plasmid-containing multidrug resistant isolates. In this study, chlortetracycline treatment at different concentrations in pig feed was examined for its impact on selection and dissemination of an IncA/C plasmid introduced orally via a commensalEscherichia colihost. Continuous low-dose administration of chlortetracycline at 50 g per ton had no observable impact on the proportions of IncA/C plasmid-containingE. colifrom pig feces over the course of 35 days. In contrast, high-dose administration of chlortetracycline at 350 g per ton significantly increased IncA/C plasmid-containingE. coliin pig feces (P< 0.001) and increased movement of the IncA/C plasmid to other indigenousE. colihosts. There was no evidence of conjugal transfer of the IncA/C plasmid to bacterial species other thanE. coli.In vitrocompetition assays demonstrated that bacterial host background substantially impacted the cost of IncA/C plasmid carriage inE. coliandSalmonella.In vitrotransfer and selection experiments demonstrated that tetracycline at 32 μg/ml was necessary to enhance IncA/C plasmid conjugative transfer, while subinhibitory concentrations of tetracyclinein vitrostrongly selected for IncA/C plasmid-containingE. coli. Together, these experiments improve our knowledge on the impact of differing concentrations of tetracycline on the selection of IncA/C-type plasmids.


Sign in / Sign up

Export Citation Format

Share Document