scholarly journals Neural Taskonomy: Inferring the Similarity of Task-Derived Representations from Brain Activity

2019 ◽  
Author(s):  
Aria Y. Wang ◽  
Leila Wehbe ◽  
Michael J. Tarr

AbstractConvolutional neural networks (CNNs) trained for object recognition have been widely used to account for visually-driven neural responses in both the human and primate brains. However, because of the generality and complexity of the task of object classification, it is often difficult to make precise inferences about neural information processing using CNN representations from object classification despite the fact that these representations are effective for predicting brain activity. To better understand underlying the nature of the visual features encoded in different brain regions of the human brain, we predicted brain responses to images using fine-grained representations drawn from 19 specific computer vision tasks. Individual encoding models for each task were constructed and then applied to BOLD5000—a large-scale dataset comprised of fMRI scans collected while observers viewed over 5000 naturalistic scene and object images. Because different encoding models predict activity in different brain regions, we were able to associate specific vision tasks with each region. For example, within scene-selective brain regions, features from 3D tasks such as 3D keypoints and 3D edges explain greater variance as compared to 2D tasks—a pattern that replicates across the whole brain. Using results across all 19 task representations, we constructed a “task graph” based on the spatial layout of well-predicted brain areas from each task. We then compared the brain-derived task structure with the task structure derived from transfer learning accuracy in order to assess the degree of shared information between the two task spaces. These computationally-driven results—arising out of state-of-the-art computer vision methods—begin to reveal the task-specific architecture of the human visual system.

Author(s):  
Hana Burianová

Determining the mechanisms that underlie neurocognitive aging, such as compensation or dedifferentiation, and facilitating the development of effective strategies for cognitive improvement is essential due to the steadily rising aging population. One approach to study the characteristics of healthy aging comprises the assessment of functional connectivity, delineating markers of age-related neurocognitive plasticity. Functional connectivity paradigms characterize complex one-to-many (or many-to-many) structure–function relations, as higher-level cognitive processes are mediated by the interaction among a number of functionally related neural areas rather than localized to discrete brain regions. Task-related or resting-state interregional correlations of brain activity have been used as reliable indices of functional connectivity, delineating age-related alterations in a number of large-scale brain networks, which subserve attention, working memory, episodic retrieval, and task-switching. Together with behavioral and regional activation studies, connectivity studies and modeling approaches have contributed to our understanding of the mechanisms of age-related reorganization of distributed functional networks; specifically, reduced neural specificity (dedifferentiation) and associated impairment in inhibitory control and compensatory neural recruitment.


2019 ◽  
Vol 30 (3) ◽  
pp. 1716-1734 ◽  
Author(s):  
Ryan V Raut ◽  
Anish Mitra ◽  
Scott Marek ◽  
Mario Ortega ◽  
Abraham Z Snyder ◽  
...  

Abstract Spontaneous infra-slow (<0.1 Hz) fluctuations in functional magnetic resonance imaging (fMRI) signals are temporally correlated within large-scale functional brain networks, motivating their use for mapping systems-level brain organization. However, recent electrophysiological and hemodynamic evidence suggest state-dependent propagation of infra-slow fluctuations, implying a functional role for ongoing infra-slow activity. Crucially, the study of infra-slow temporal lag structure has thus far been limited to large groups, as analyzing propagation delays requires extensive data averaging to overcome sampling variability. Here, we use resting-state fMRI data from 11 extensively-sampled individuals to characterize lag structure at the individual level. In addition to stable individual-specific features, we find spatiotemporal topographies in each subject similar to the group average. Notably, we find a set of early regions that are common to all individuals, are preferentially positioned proximal to multiple functional networks, and overlap with brain regions known to respond to diverse behavioral tasks—altogether consistent with a hypothesized ability to broadly influence cortical excitability. Our findings suggest that, like correlation structure, temporal lag structure is a fundamental organizational property of resting-state infra-slow activity.


2021 ◽  
Vol 7 (29) ◽  
pp. eabf2513
Author(s):  
Luke J. Hearne ◽  
Ravi D. Mill ◽  
Brian P. Keane ◽  
Grega Repovš ◽  
Alan Anticevic ◽  
...  

Cognitive dysfunction is a core feature of many brain disorders, including schizophrenia (SZ), and has been linked to aberrant brain activations. However, it is unclear how these activation abnormalities emerge. We propose that aberrant flow of brain activity across functional connectivity (FC) pathways leads to altered activations that produce cognitive dysfunction in SZ. We tested this hypothesis using activity flow mapping, an approach that models the movement of task-related activity between brain regions as a function of FC. Using functional magnetic resonance imaging data from SZ individuals and healthy controls during a working memory task, we found that activity flow models accurately predict aberrant cognitive activations across multiple brain networks. Within the same framework, we simulated a connectivity-based clinical intervention, predicting specific treatments that normalized brain activations and behavior in patients. Our results suggest that dysfunctional task-evoked activity flow is a large-scale network mechanism contributing to cognitive dysfunction in SZ.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
G. Arnulfo ◽  
S. H. Wang ◽  
V. Myrov ◽  
B. Toselli ◽  
J. Hirvonen ◽  
...  

Abstract Inter-areal synchronization of neuronal oscillations at frequencies below ~100 Hz is a pervasive feature of neuronal activity and is thought to regulate communication in neuronal circuits. In contrast, faster activities and oscillations have been considered to be largely local-circuit-level phenomena without large-scale synchronization between brain regions. We show, using human intracerebral recordings, that 100–400 Hz high-frequency oscillations (HFOs) may be synchronized between widely distributed brain regions. HFO synchronization expresses individual frequency peaks and exhibits reliable connectivity patterns that show stable community structuring. HFO synchronization is also characterized by a laminar profile opposite to that of lower frequencies. Importantly, HFO synchronization is both transiently enhanced and suppressed in separate frequency bands during a response-inhibition task. These findings show that HFO synchronization constitutes a functionally significant form of neuronal spike-timing relationships in brain activity and thus a mesoscopic indication of neuronal communication per se.


2001 ◽  
Vol 86 (2) ◽  
pp. 809-823 ◽  
Author(s):  
Dirk Jones ◽  
F. Gonzalez-Lima

Pavlovian conditioning effects on the brain were investigated by mapping rat brain activity with fluorodeoxyglucose (FDG) autoradiography. The goal was to map the effects of the same tone after blocking or eliciting a conditioned emotional response (CER). In the tone-blocked group, previous learning about a light blocked a CER to the tone. In the tone-excitor group, the same pairings of tone with shock US resulted in a CER to the tone in the absence of previous learning about the light. A third group showed no CER after pseudorandom presentations of these stimuli. Brain systems involved in the various associative effects of Pavlovian conditioning were identified, and their functional significance was interpreted in light of previous FDG studies. Three conditioning effects were mapped: 1) blocking effects: FDG uptake was lower in medial prefrontal cortex and higher in spinal trigeminal and cuneate nuclei in the tone-blocked group relative to the tone-excitor group. 2) Contiguity effects: relative to pseudorandom controls, similar FDG uptake increases in the tone-blocked and -excitor groups were found in auditory regions (inferior colliculus and cortex), hippocampus (CA1), cerebellum, caudate putamen, and solitary nucleus. Contiguity effects may be due to tone-shock pairings common to the tone-blocked and -excitor groups rather than their different CER. And 3) excitatory effects: FDG uptake increases limited to the tone-excitor group occurred in a circuit linked to the CER, including insular and anterior cingulate cortex, vertical diagonal band nucleus, anterior hypothalamus, and caudoventral caudate putamen. This study provided the first large-scale map of brain regions underlying the Kamin blocking effect on conditioning. In particular, the results suggest that suppression of prefrontal activity and activation of unconditioned stimulus pathways are important neural substrates of the Kamin blocking effect.


2015 ◽  
Vol 112 (27) ◽  
pp. 8463-8468 ◽  
Author(s):  
Sepideh Sadaghiani ◽  
Jean-Baptiste Poline ◽  
Andreas Kleinschmidt ◽  
Mark D’Esposito

Most brain activity occurs in an ongoing manner not directly locked to external events or stimuli. Regional ongoing activity fluctuates in unison with some brain regions but not others, and the degree of long-range coupling is called functional connectivity, often measured with correlation. Strength and spatial distributions of functional connectivity dynamically change in an ongoing manner over seconds to minutes, even when the external environment is held constant. Direct evidence for any behavioral relevance of these continuous large-scale dynamics has been limited. Here, we investigated whether ongoing changes in baseline functional connectivity correlate with perception. In a continuous auditory detection task, participants perceived the target sound in roughly one-half of the trials. Very long (22–40 s) interstimulus intervals permitted investigation of baseline connectivity unaffected by preceding evoked responses. Using multivariate classification, we observed that functional connectivity before the target predicted whether it was heard or missed. Using graph theoretical measures, we characterized the difference in functional connectivity between states that lead to hits vs. misses. Before misses compared with hits and task-free rest, connectivity showed reduced modularity, a measure of integrity of modular network structure. This effect was strongest in the default mode and visual networks and caused by both reduced within-network connectivity and enhanced across-network connections before misses. The relation of behavior to prestimulus connectivity was dissociable from that of prestimulus activity amplitudes. In conclusion, moment to moment dynamic changes in baseline functional connectivity may shape subsequent behavioral performance. A highly modular network structure seems beneficial to perceptual efficiency.


Electronics ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1196
Author(s):  
Long Hoang ◽  
Suk-Hwan Lee ◽  
Oh-Heum Kwon ◽  
Ki-Ryong Kwon

Computer vision recently has many applications such as smart cars, robot navigation, and computer-aided manufacturing. Object classification, in particular 3D classification, is a major part of computer vision. In this paper, we propose a novel method, wave kernel signature (WKS) and a center point (CP) method, which extracts color and distance features from a 3D model to tackle 3D object classification. The motivation of this idea is from the nature of human vision, which we tend to classify an object based on its color and size. Firstly, we find a center point of the mesh to define distance feature. Secondly, we calculate eigenvalues from the 3D mesh, and WKS values, respectively, to capture color feature. These features will be an input of a 2D convolution neural network (CNN) architecture. We use two large-scale 3D model datasets: ModelNet10 and ModelNet40 to evaluate the proposed method. Our experimental results show more accuracy and efficiency than other methods. The proposed method could apply for actual-world problems like autonomous driving and augmented/virtual reality.


2021 ◽  
Author(s):  
Jia Zhao ◽  
Gefei Wang ◽  
Jingsi Ming ◽  
Zhixiang Lin ◽  
Yang Wang ◽  
...  

The rapid emergence of large-scale atlas-level single-cell RNA-sequencing (scRNA-seq) datasets from various sources presents remarkable opportunities for broad and deep biological investigations through integrative analyses. However, harmonizing such datasets requires integration approaches to be not only computationally scalable, but also capable of preserving a wide range of fine-grained cell populations. We created Portal, a unified framework of adversarial domain translation to learn harmonized representations of datasets. With innovation in model and algorithm designs, Portal achieves superior performance in preserving biological variation during integration, while having significantly reduced running time and memory compared to existing approaches, achieving integration of millions of cells in minutes with low memory consumption. We demonstrate the efficiency and accuracy of Portal using diverse datasets ranging from mouse brain atlas projects, the Tabula Muris project, and the Tabula Microcebus project. Portal has broad applicability and in addition to integrating multiple scRNA-seq datasets, it can also integrate scRNA-seq with single-nucleus RNA-sequencing (snRNA-seq) data. Finally, we demonstrate the utility of Portal by applying it to the integration of cross-species datasets with limited shared-information between them, and are able to elucidate biological insights into the similarities and divergences in the spermatogenesis process between mouse, macaque, and human.


2019 ◽  
Author(s):  
Ruud L. van den Brink ◽  
Thomas Pfeffer ◽  
Tobias Donner

Brain activity fluctuates continuously, even in the absence of changes in sensory input or motor output. These intrinsic activity fluctuations are correlated across brain regions and are spatially organized in macroscale networks. Variations in the strength, topography, and topology of correlated activity occur over time, and unfold upon a backbone of long-range anatomical connections. Subcortical neuromodulatory systems send widespread ascending projections to the cortex, and are thus ideally situated to shape the temporal and spatial structure of intrinsic correlations. These systems are also the targets of the pharmacological treatment of major neurological and psychiatric disorders, such as Parkinson’s disease, depression, and schizophrenia. Here, we review recent work that has investigated how neuromodulatory systems shape correlations of intrinsic fluctuations of large-scale cortical activity. We discuss studies in the human, monkey, and rodent brain, with a focus on non-invasive recordings of human brain activity. We provide a structured but selective overview of this work and distill a number of emerging principles. Future efforts to chart the effect of specific neuromodulators and, in particular, specific receptors, on intrinsic correlations may help identify shared or antagonistic principles between different neuromodulatory systems. Such principles can inform models of healthy brain function and may provide an important reference for understanding altered cortical dynamics that are evident in neurological and psychiatric disorders, potentially paving the way for mechanistically-inspired biomarkers and individualized treatments of these disorders.


2017 ◽  
Author(s):  
Giri P. Krishnan ◽  
Oscar C. González ◽  
Maxim Bazhenov

AbstractResting or baseline state low frequency (0.01-0.2 Hz) brain activity has been observed in fMRI, EEG and LFP recordings. These fluctuations were found to be correlated across brain regions, and are thought to reflect neuronal activity fluctuations between functionally connected areas of the brain. However, the origin of these infra-slow fluctuations remains unknown. Here, using a detailed computational model of the brain network, we show that spontaneous infra-slow (< 0.05 Hz) fluctuations could originate due to the ion concentration dynamics. The computational model implemented dynamics for intra and extracellular K+ and Na+ and intracellular Cl- ions, Na+/K+ exchange pump, and KCC2 co-transporter. In the network model representing resting awake-like brain state, we observed slow fluctuations in the extracellular K+ concentration, Na+/K+ pump activation, firing rate of neurons and local field potentials. Holding K+ concentration constant prevented generation of these fluctuations. The amplitude and peak frequency of this activity were modulated by Na+/K+ pump, AMPA/GABA synaptic currents and glial properties. Further, in a large-scale network with long-range connections based on CoCoMac connectivity data, the infra-slow fluctuations became synchronized among remote clusters similar to the resting-state networks observed in vivo. Overall, our study proposes that ion concentration dynamics mediated by neuronal and glial activity may contribute to the generation of very slow spontaneous fluctuations of brain activity that are observed as the resting-state fluctuations in fMRI and EEG recordings.


Sign in / Sign up

Export Citation Format

Share Document