scholarly journals Lessons in genome engineering: opportunities, tools and pitfalls

2019 ◽  
Author(s):  
Ingrid Poernbacher ◽  
Sam Crossman ◽  
Joachim Kurth ◽  
Hisashi Nojima ◽  
Alberto Baena-Lopez ◽  
...  

ABSTRACTCRISPR/Cas technology allows the creation of double strand breaks and hence loss of function mutations at any location in the genome. This technology is now routine for many organisms and cell lines. Here we describe how CRISPR/Cas can be combined with other DNA manipulation techniques (e.g. homology-based repair, site-specific integration and Cre or FLP-mediated recombination) to create sophisticated tools to measure and manipulate gene activity. In one class of applications, a single site-specific insertion generates a transcriptional reporter, a loss-of function allele, and a tagged allele. In a second class of modifications, essential sequences are deleted and replaced with an integrase site, which serves as a platform for the creation of custom reporters, transcriptional drivers, conditional alleles and regulatory mutations. We describe how these tools and protocols can be implemented easily and efficiently. Importantly, we also highlight unanticipated failures, which serve as cautionary tales, and suggest mitigating measures. Our tools are designed for use in Drosophila but the lessons we draw are likely to be widely relevant.AUTHOR SUMMARYThe genome contains all the information that an organism needs to develop and function throughout its life. One of the goal of genetics is to decipher the role of all the genes (typically several thousands for an animal) present in the genome. One approach is to delete each gene and assay the consequences. Deletion of individual genes is now readily achieved with a technique called CRISPR/Cas9. However, simple genetic deletion provides limited information. Here we describe strains and DNA vectors that streamline the generation of more sophisticated genetic tools. We describe general means of creating alleles (genetic variants) that enable gene activity to be measured and experimentally modulated in space and time. Although the tools we describe are universally applicable, each gene requires special consideration. Based on our experience of successes and failures, we suggest measures to maximise the chances that engineered alleles serve their intended purpose. Although our methods are designed for use in Drosophila, they could be adapted to any organism that is amenable to CRISPR/Cas9 genome modification.

2002 ◽  
Vol 65 (11) ◽  
pp. 509-514
Author(s):  
Kate Gregory ◽  
Deanna Gibbs

AIDS Dementia Complex (ADC) is a subcortical dementia often associated with HIV disease. Despite undergoing numerous assessments of cognition and function to determine their need for personal care assistance, there is limited information on how individuals with ADC view their functional and cognitive impairments and the subsequent effect on their lifestyle. This study investigated issues of concern to clients with ADC in order to provide a greater understanding of the psychological effect of the loss of functional ability. A qualitative design was used to explore individuals' experience of ADC and clarify their insight and perception regarding the loss of function. The participants were selected by the use of purposeful sampling techniques. Information was obtained through semi-structured interviews and analysed using an analytic induction method. Five main themes were identified as being important in relation to the perception of functional ability. Discrepancies emerged between the insights of individuals with ADC regarding their level of function and their need for assistance and support with activities of daily living, compared with those of the health care workers involved in their care. Health care workers need to have an awareness of the insight that individuals with ADC may have into their functional ability when addressing issues of supported accommodation and level of assistance required.


2020 ◽  
Author(s):  
Joshua R. Elmore ◽  
Gara N. Dexter ◽  
Ryan Francis ◽  
Lauren Riley ◽  
Jay Huenemann ◽  
...  

AbstractSustainable enhancements to crop productivity and increased resilience to adverse conditions are critical for modern agriculture, and application of plant growth promoting rhizobacteria (PGPR) is a promising method to achieve these goals. However, many desirable PGPR traits are highly regulated in their native microbe, limited to certain plant rhizospheres, or insufficiently active for agricultural purposes. Synthetic biology can address these limitations, but its application is limited by availability of appropriate tools for sophisticated, high-throughput genome engineering that function in environments where selection for DNA maintenance is impractical. Here we present an orthogonal, Serine-integrase Assisted Genome Engineering (SAGE) system, which enables iterative, site-specific integration of up to 10 different DNA constructs at efficiency on par or better than replicating plasmids. SAGE does not require use of replicating plasmids to deliver recombination machinery, and employs a secondary serine-integrase to excise and recycle selection markers. Furthermore, unlike the widely utilized pBBR1 origin, DNA transformed using SAGE is stable without selection. We highlight SAGE’s utility by constructing a 287-member constitutive promoter library with a ∼40,000-fold dynamic range in P. fluorescens SBW25. We show that SAGE functions robustly in diverse α- and γ-proteobacteria, thus providing evidence that it will be broadly useful for engineering industrial or environmental bacteria.


2012 ◽  
Vol 78 (6) ◽  
pp. 1804-1812 ◽  
Author(s):  
Simone Herrmann ◽  
Theresa Siegl ◽  
Marta Luzhetska ◽  
Lutz Petzke ◽  
Caroline Jilg ◽  
...  

ABSTRACTThe feasibility of using technologies based on site-specific recombination in actinomycetes was shown several years ago. Despite their huge potential, these technologies mostly have been used for simple marker removal from a chromosome. In this paper, we present different site-specific recombination strategies for genome engineering in several actinomycetes belonging to the generaStreptomyces,Micromonospora, andSaccharothrix. Two different systems based on Cre/loxPand Dre/roxhave been utilized for numerous applications. The activity of the Cre recombinase on the heterospecificloxLEandloxREsites was similar to its activity on wild-typeloxPsites. Moreover, an apramycin resistance marker flanked by theloxLEREsites was eliminated from theStreptomyces coelicolorM145 genome at a surprisingly high frequency (80%) compared to other bacteria. A synthetic gene encoding the Dre recombinase was constructed and successfully expressed in actinomycetes. We developed a marker-free expression method based on the combination of phage integration systems and site-specific recombinases. The Cre recombinase has been used in the deletion of huge genomic regions, including the phenalinolactone, monensin, and lipomycin biosynthetic gene clusters fromStreptomycessp. strain Tü6071,Streptomyces cinnamonensisA519, andStreptomyces aureofaciensTü117, respectively. Finally, we also demonstrated the site-specific integration of plasmid and cosmid DNA into the chromosome of actinomycetes catalyzed by the Cre recombinase. We anticipate that the strategies presented here will be used extensively to study the genetics of actinomycetes.


2002 ◽  
Vol 68 (6) ◽  
pp. 2924-2933 ◽  
Author(s):  
Ming-Ren Yen ◽  
Nien-Tsung Lin ◽  
Chih-Hsin Hung ◽  
Ka-Tim Choy ◽  
Shu-Fen Weng ◽  
...  

ABSTRACT A 13-kb DNA fragment containing oriC and the flanking genes thdF, orf900, yidC, rnpA, rpmH, oriC, dnaA, dnaN, recF, and gyrB was cloned from the gram-negative plant pathogen Xanthomonas campestris pv. campestris 17. These genes are conserved in order with other eubacterial oriC genes and code for proteins that share high degrees of identity with their homologues, except for orf900, which has a homologue only in Xylella fastidiosa. The dnaA/dnaN intergenic region (273 bp) identified to be the minimal oriC region responsible for autonomous replication has 10 pure AT clusters of four to seven bases and only three consensus DnaA boxes. These findings are in disagreement with the notion that typical oriCs contain four or more DnaA boxes located upstream of the dnaA gene. The X. campestris pv. campestris 17 attB site required for site-specific integration of cloned fragments from filamentous phage φLf replicative form DNA was identified to be a dif site on the basis of similarities in nucleotide sequence and function with the Escherichia coli dif site required for chromosome dimer resolution and whose deletion causes filamentation of the cells. The oriC and dif sites were located at 12:00 and 6:00, respectively, on the circular X. campestris pv. campestris 17 chromosome map, similar to the locations found for E. coli sites. Computer searches revealed the presence of both the dif site and XerC/XerD recombinase homologues in 16 of the 42 fully sequenced eubacterial genomes, but eight of the dif sites are located far away from the 6:00 point instead of being placed opposite the cognate oriC. The differences in the relative position suggest that mechanisms different from that of E. coli may participate in the control of chromosome replication.


2019 ◽  
Vol 5 (1) ◽  
Author(s):  
Adrian Israel Lehvy ◽  
Guy Horev ◽  
Yarden Golan ◽  
Fabian Glaser ◽  
Yael Shammai ◽  
...  

Abstract Zinc is vital for the structure and function of ~3000 human proteins and hence plays key physiological roles. Consequently, impaired zinc homeostasis is associated with various human diseases including cancer. Intracellular zinc levels are tightly regulated by two families of zinc transporters: ZIPs and ZnTs; ZIPs import zinc into the cytosol from the extracellular milieu, or from the lumen of organelles into the cytoplasm. In contrast, the vast majority of ZnTs compartmentalize zinc within organelles, whereas the ubiquitously expressed ZnT1 is the sole zinc exporter. Herein, we explored the hypothesis that qualitative and quantitative alterations in ZnT1 activity impair cellular zinc homeostasis in cancer. Towards this end, we first used bioinformatics to analyze inactivating mutations in ZIPs and ZNTs, catalogued in the COSMIC and gnomAD databases, representing tumor specimens and healthy population controls, respectively. ZnT1, ZnT10, ZIP8, and ZIP10 showed extremely high rates of loss of function mutations in cancer as compared to healthy controls. Analysis of the putative functional impact of missense mutations in ZnT1-ZnT10 and ZIP1-ZIP14, using homologous protein alignment and structural predictions, revealed that ZnT1 displays a markedly increased frequency of predicted functionally deleterious mutations in malignant tumors, as compared to a healthy population. Furthermore, examination of ZnT1 expression in 30 cancer types in the TCGA database revealed five tumor types with significant ZnT1 overexpression, which predicted dismal prognosis for cancer patient survival. Novel functional zinc transport assays, which allowed for the indirect measurement of cytosolic zinc levels, established that wild type ZnT1 overexpression results in low intracellular zinc levels. In contrast, overexpression of predicted deleterious ZnT1 missense mutations did not reduce intracellular zinc levels, validating eight missense mutations as loss of function (LoF) mutations. Thus, alterations in ZnT1 expression and LoF mutations in ZnT1 provide a molecular mechanism for impaired zinc homeostasis in cancer formation and/or progression.


2019 ◽  
Vol 10 (1) ◽  
pp. 199-210 ◽  
Author(s):  
Chuanman Zhou ◽  
Jintao Luo ◽  
Xiaohui He ◽  
Qian Zhou ◽  
Yunxia He ◽  
...  

NALCN (Na+leak channel, non-selective) is a conserved, voltage-insensitive cation channel that regulates resting membrane potential and neuronal excitability. UNC79 and UNC80 are key regulators of the channel function. However, the behavioral effects of the channel complex are not entirely clear and the neurons in which the channel functions remain to be identified. In a forward genetic screen for C. elegans mutants with defective avoidance response to the plant hormone methyl salicylate (MeSa), we isolated multiple loss-of-function mutations in unc-80 and unc-79. C. elegans NALCN mutants exhibited similarly defective MeSa avoidance. Interestingly, NALCN, unc-80 and unc-79 mutants all showed wild type-like responses to other attractive or repelling odorants, suggesting that NALCN does not broadly affect odor detection or related forward and reversal behaviors. To understand in which neurons the channel functions, we determined the identities of a subset of unc-80-expressing neurons. We found that unc-79 and unc-80 are expressed and function in overlapping neurons, which verified previous assumptions. Neuron-specific transgene rescue and knockdown experiments suggest that the command interneurons AVA and AVE and the anterior guidepost neuron AVG can play a sufficient role in mediating unc-80 regulation of the MeSa avoidance. Though primarily based on genetic analyses, our results further imply that MeSa might activate NALCN by direct or indirect actions. Altogether, we provide an initial look into the key neurons in which the NALCN channel complex functions and identify a novel function of the channel in regulating C. elegans reversal behavior through command interneurons.


Author(s):  
Vitalii Kryvenko ◽  
Olga Vagin ◽  
Laura A. Dada ◽  
Jacob I. Sznajder ◽  
István Vadász

Abstract The Na,K-ATPase establishes the electrochemical gradient of cells by driving an active exchange of Na+ and K+ ions while consuming ATP. The minimal functional transporter consists of a catalytic α-subunit and a β-subunit with chaperon activity. The Na,K-ATPase also functions as a cell adhesion molecule and participates in various intracellular signaling pathways. The maturation and trafficking of the Na,K-ATPase include co- and post-translational processing of the enzyme in the endoplasmic reticulum (ER) and the Golgi apparatus and subsequent delivery to the plasma membrane (PM). The ER folding of the enzyme is considered as the rate-limiting step in the membrane delivery of the protein. It has been demonstrated that only assembled Na,K-ATPase α:β-complexes may exit the organelle, whereas unassembled, misfolded or unfolded subunits are retained in the ER and are subsequently degraded. Loss of function of the Na,K-ATPase has been associated with lung, heart, kidney and neurological disorders. Recently, it has been shown that ER dysfunction, in particular, alterations in the homeostasis of the organelle, as well as impaired ER-resident chaperone activity may impede folding of Na,K-ATPase subunits, thus decreasing the abundance and function of the enzyme at the PM. Here, we summarize our current understanding on maturation and subsequent processing of the Na,K-ATPase in the ER under physiological and pathophysiological conditions. Graphic Abstract


Author(s):  
Paolo Zanoni ◽  
Katharina Steindl ◽  
Deepanwita Sengupta ◽  
Pascal Joset ◽  
Angela Bahr ◽  
...  

Abstract Purpose Despite a few recent reports of patients harboring truncating variants in NSD2, a gene considered critical for the Wolf–Hirschhorn syndrome (WHS) phenotype, the clinical spectrum associated with NSD2 pathogenic variants remains poorly understood. Methods We collected a comprehensive series of 18 unpublished patients carrying heterozygous missense, elongating, or truncating NSD2 variants; compared their clinical data to the typical WHS phenotype after pooling them with ten previously described patients; and assessed the underlying molecular mechanism by structural modeling and measuring methylation activity in vitro. Results The core NSD2-associated phenotype includes mostly mild developmental delay, prenatal-onset growth retardation, low body mass index, and characteristic facial features distinct from WHS. Patients carrying missense variants were significantly taller and had more frequent behavioral/psychological issues compared with those harboring truncating variants. Structural in silico modeling suggested interference with NSD2’s folding and function for all missense variants in known structures. In vitro testing showed reduced methylation activity and failure to reconstitute H3K36me2 in NSD2 knockout cells for most missense variants. Conclusion NSD2 loss-of-function variants lead to a distinct, rather mild phenotype partially overlapping with WHS. To avoid confusion for patients, NSD2 deficiency may be named Rauch–Steindl syndrome after the delineators of this phenotype.


AMB Express ◽  
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Neeraja Punde ◽  
Jennifer Kooken ◽  
Dagmar Leary ◽  
Patricia M. Legler ◽  
Evelina Angov

Abstract Codon usage frequency influences protein structure and function. The frequency with which codons are used potentially impacts primary, secondary and tertiary protein structure. Poor expression, loss of function, insolubility, or truncation can result from species-specific differences in codon usage. “Codon harmonization” more closely aligns native codon usage frequencies with those of the expression host particularly within putative inter-domain segments where slower rates of translation may play a role in protein folding. Heterologous expression of Plasmodium falciparum genes in Escherichia coli has been a challenge due to their AT-rich codon bias and the highly repetitive DNA sequences. Here, codon harmonization was applied to the malarial antigen, CelTOS (Cell-traversal protein for ookinetes and sporozoites). CelTOS is a highly conserved P. falciparum protein involved in cellular traversal through mosquito and vertebrate host cells. It reversibly refolds after thermal denaturation making it a desirable malarial vaccine candidate. Protein expressed in E. coli from a codon harmonized sequence of P. falciparum CelTOS (CH-PfCelTOS) was compared with protein expressed from the native codon sequence (N-PfCelTOS) to assess the impact of codon usage on protein expression levels, solubility, yield, stability, structural integrity, recognition with CelTOS-specific mAbs and immunogenicity in mice. While the translated proteins were expected to be identical, the translated products produced from the codon-harmonized sequence differed in helical content and showed a smaller distribution of polypeptides in mass spectra indicating lower heterogeneity of the codon harmonized version and fewer amino acid misincorporations. Substitutions of hydrophobic-to-hydrophobic amino acid were observed more commonly than any other. CH-PfCelTOS induced significantly higher antibody levels compared with N-PfCelTOS; however, no significant differences in either IFN-γ or IL-4 cellular responses were detected between the two antigens.


Sign in / Sign up

Export Citation Format

Share Document