scholarly journals The role of atoh1 genes in the development of the lower rhombic lip during zebrafish hindbrain morphogenesis

2019 ◽  
Author(s):  
Ivan Belzunce ◽  
Cristina Pujades

ABSTRACTBACKGROUNDThe Lower Rhombic Lip (LRL) is a transient neuroepithelial structure of the dorsal hindbrain, which expands from r2 to r7, and gives rise to deep nuclei of the brainstem, such as the vestibular and auditory nuclei and most posteriorly the precerebellar nuclei. Although there is information about the contribution of specific proneural-progenitor populations to specific deep nuclei, and the distinct rhombomeric contribution, little is known about how progenitor cells from the LRL behave during neurogenesis and how their transition into differentiation is regulated.RESULTSIn this work, we investigated the atoh1 gene regulatory network operating in the specification of LRL cells, and the kinetics of cell proliferation and behavior of atoh1a-derivatives by using complementary strategies in the zebrafish embryo. We unveiled that atoh1a is necessary and sufficient for specification of LRL cells by activating atoh1b, which worked as a differentiation gene to transition progenitor cells towards neuron differentiation in a Notch-dependent manner. This cell state transition involved the release of atoh1a-derivatives from the LRL: atoh1a progenitors contributed first to atoh1b cells, which are committed non-proliferative precursors, and to the lhx2b-neuronal lineage as demonstrated by cell fate studies and functional analyses. Using in vivo cell lineage approaches we showed that the proliferative cell capacity, as well as their mode of division, relied on the position of the atoh1a progenitors within the dorsoventral axis.CONCLUSIONSOur data demonstrates that the zebrafish provides an excellent model to study the in vivo behavior of distinct progenitor populations to the final neuronal differentiated pools, and to reveal the subfunctionalization of ortholog genes. Here, we unveil that atoh1a behaves as the cell fate selector gene, whereas atoh1b functions as a neuronal differentiation gene, contributing to the lhx2b neuronal population. atoh1a-progenitor cell dynamics (cell proliferation, cell differentiation, and neuronal migration) relies on their position, demonstrating the challenges that progenitor cells face in computing positional information from a dynamic two-dimensional grid in order to generate the stereotyped neuronal structures in the embryonic hindbrain.

2019 ◽  
Author(s):  
Tim D.D. Somerville ◽  
Giulia Biffi ◽  
Juliane Daßler-Plenker ◽  
Koji Miyabayashi ◽  
Yali Xu ◽  
...  

AbstractA highly aggressive subset of pancreatic ductal adenocarcinomas undergo trans-differentiation into the squamous lineage during disease progression. While the tumorigenic consequences of this aberrant cell fate transition are poorly understood, recent studies have identified a role for the master regulator TP63 in this process. Here, we investigated whether squamous trans-differentiation of pancreatic cancer cells can influence the phenotype of non-neoplastic cells in the tumor microenvironment. Conditioned media experiments revealed that squamous-subtype pancreatic cancer cells secrete factors that convert quiescent pancreatic stellate cells into a specialized subtype of cancer-associated fibroblasts (CAFs) that express inflammatory genes at high levels. We use gain- and loss-of-function approaches in vivo to show that squamous-subtype pancreatic tumor models become enriched with inflammatory CAFs and neutrophils in a TP63-dependent manner. These non cell-autonomous effects occur, at least in part, through TP63-mediated activation of enhancers at pro-inflammatory cytokine loci, which includes IL1A as a key target. Taken together, our findings reveal enhanced tissue inflammation as a consequence of squamous trans-differentiation in pancreatic cancer, thus highlighting an instructive role of tumor cell lineage in reprogramming the stromal microenvironment.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhengjian Yan ◽  
Lei Chu ◽  
Xiaojiong Jia ◽  
Lu Lin ◽  
Si Cheng

Abstract Introduction Stem cell therapy using neural progenitor cells (NPCs) shows promise in mitigating the debilitating effects of spinal cord injury (SCI). Notably, myelin stimulates axonal regeneration from mammalian NPCs. This led us to hypothesize that myelin-associated proteins may contribute to axonal regeneration from NPCs. Methods We conducted an R-based bioinformatics analysis to identify key gene(s) that may participate in myelin-associated axonal regeneration from murine NPCs, which identified the serine protease myelin basic protein (Mbp). We employed E12 murine NPCs, E14 rat NPCs, and human iPSC-derived Day 1 NPCs (D1 hNPCs) with or without CRISPR/Cas9-mediated Mbp knockout in combination with rescue L1-70 overexpression, constitutively-active VP16-PPARγ2, or the PPARγ agonist ciglitazone. A murine dorsal column crush model of SCI utilizing porous collagen-based scaffolding (PCS)-seeded murine NPCs with or without stable Mbp overexpression was used to assess locomotive recovery and axonal regeneration in vivo. Results Myelin promotes axonal outgrowth from NPCs in an Mbp-dependent manner and that Mbp’s stimulatory effects on NPC neurite outgrowth are mediated by Mbp’s production of L1-70. Furthermore, we determined that Mbp/L1-70’s stimulatory effects on NPC neurite outgrowth are mediated by PPARγ-based repression of neuron differentiation-associated gene expression and PPARγ-based Erk1/2 activation. In vivo, PCS-seeded murine NPCs stably overexpressing Mbp significantly enhanced locomotive recovery and axonal regeneration in post-SCI mice. Conclusions We discovered that Mbp supports axonal regeneration from mammalian NPCs through the novel Mbp/L1cam/Pparγ signaling pathway. This study suggests that bioengineered, NPC-based interventions can promote axonal regeneration and functional recovery post-SCI.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Tim Liebisch ◽  
Armin Drusko ◽  
Biena Mathew ◽  
Ernst H. K. Stelzer ◽  
Sabine C. Fischer ◽  
...  

AbstractDuring the mammalian preimplantation phase, cells undergo two subsequent cell fate decisions. During the first decision, the trophectoderm and the inner cell mass are formed. Subsequently, the inner cell mass segregates into the epiblast and the primitive endoderm. Inner cell mass organoids represent an experimental model system, mimicking the second cell fate decision. It has been shown that cells of the same fate tend to cluster stronger than expected for random cell fate decisions. Three major processes are hypothesised to contribute to the cell fate arrangements: (1) chemical signalling; (2) cell sorting; and (3) cell proliferation. In order to quantify the influence of cell proliferation on the observed cell lineage type clustering, we developed an agent-based model accounting for mechanical cell–cell interaction, i.e. adhesion and repulsion, cell division, stochastic cell fate decision and cell fate heredity. The model supports the hypothesis that initial cell fate acquisition is a stochastically driven process, taking place in the early development of inner cell mass organoids. Further, we show that the observed neighbourhood structures can emerge solely due to cell fate heredity during cell division.


2021 ◽  
Vol 12 (7) ◽  
Author(s):  
Qian Liu ◽  
Lijuan Guo ◽  
Hongyan Qi ◽  
Meng Lou ◽  
Rui Wang ◽  
...  

AbstractRibonucleotide reductase (RR) is a unique enzyme for the reduction of NDPs to dNDPs, the building blocks for DNA synthesis and thus essential for cell proliferation. Pan-cancer profiling studies showed that RRM2, the small subunit M2 of RR, is abnormally overexpressed in multiple types of cancers; however, the underlying regulatory mechanisms in cancers are still unclear. In this study, through searching in cancer-omics databases and immunohistochemistry validation with clinical samples, we showed that the expression of MYBL2, a key oncogenic transcriptional factor, was significantly upregulated correlatively with RRM2 in colorectal cancer (CRC). Ectopic expression and knockdown experiments indicated that MYBL2 was essential for CRC cell proliferation, DNA synthesis, and cell cycle progression in an RRM2-dependent manner. Mechanistically, MYBL2 directly bound to the promoter of RRM2 gene and promoted its transcription during S-phase together with TAF15 and MuvB components. Notably, knockdown of MYBL2 sensitized CRC cells to treatment with MK-1775, a clinical trial drug for inhibition of WEE1, which is involved in a degradation pathway of RRM2. Finally, mouse xenograft experiments showed that the combined suppression of MYBL2 and WEE1 synergistically inhibited CRC growth with a low systemic toxicity in vivo. Therefore, we propose a new regulatory mechanism for RRM2 transcription for CRC proliferation, in which MYBL2 functions by constituting a dynamic S-phase transcription complex following the G1/early S-phase E2Fs complex. Doubly targeting the transcription and degradation machines of RRM2 could produce a synthetic inhibitory effect on RRM2 level with a novel potential for CRC treatment.


Blood ◽  
2003 ◽  
Vol 101 (11) ◽  
pp. 4342-4346 ◽  
Author(s):  
Claudiu V. Cotta ◽  
Zheng Zhang ◽  
Hyung-Gyoon Kim ◽  
Christopher A. Klug

Abstract Progenitor B cells deficient in Pax5 are developmentally multipotent, suggesting that Pax5 is necessary to maintain commitment to the B-cell lineage. Commitment may be mediated, in part, by Pax5 repression of myeloid-specific genes. To determine whether Pax5 expression in multipotential cells is sufficient to restrict development to the B-cell lineage in vivo, we enforced expression of Pax5 in hematopoietic stem cells using a retroviral vector. Peripheral blood analysis of all animals reconstituted with Pax5-expressing cells indicated that more than 90% of Pax5-expressing cells were B220+ mature B cells that were not malignant. Further analysis showed that Pax5 completely blocked T-lineage development in the thymus but did not inhibit myelopoiesis or natural killer (NK) cell development in bone marrow. These results implicate Pax5 as a critical regulator of B- versus T-cell developmental fate and suggest that Pax5 may promote commitment to the B-cell lineage by mechanisms that are independent of myeloid gene repression.


2020 ◽  
Author(s):  
Lucía Cordero-Espinoza ◽  
Timo N. Kohler ◽  
Anna M. Dowbaj ◽  
Bernhard Strauss ◽  
Olga Sarlidou ◽  
...  

AbstractIn the homeostatic liver, ductal cells intermingle with a microenvironment of endothelial and mesenchymal cells to form the functional unit of the portal tract. Ductal cells proliferate rarely in homeostasis but do so transiently after tissue injury to replenish any lost epithelium. We have shown that liver ductal cells can be expanded as liver organoids that recapitulate several of the cell-autonomous mechanisms of regeneration, but lack the stromal cell milieu of the biliary tract in vivo. Here, we describe a subpopulation of SCA1+ periportal mesenchymal cells that closely surrounds ductal cells in vivo and exerts a dual control on their proliferative capacity. Mesenchymal-secreted mitogens support liver organoid formation and expansion from differentiated ductal cells. However, direct mesenchymal-to-ductal cell-cell contact, established following a microfluidic co-encapsulation that enables the cells to self-organize into chimeric organoid structures, abolishes ductal cell proliferation in a mesenchyme-dose dependent manner. We found that it is the ratio between mesenchymal and epithelial cell contacts that determines the net outcome of ductal cell proliferation both in vitro, and in vivo, during damage-regeneration. SCA1+ mesenchymal cells control ductal cell proliferation dynamics by a mechanism involving, at least in part, Notch signalling activation. Our findings underscore how the relative abundance of cell-cell contacts between the epithelium and its mesenchymal microenvironment are key regulatory cues involved in the control of tissue regeneration.SummaryIn the homeostatic liver, the ductal epithelium intermingles with a microenvironment of stromal cells to form the functional unit of the portal tract. Ductal cells proliferate rarely in homeostasis but do so transiently after tissue injury. We have shown that these cells can be expanded as liver organoids that recapitulate several of the cell-autonomous mechanisms of regeneration, but lack the stromal cell milieu of the portal tract in vivo. Here, we describe a subpopulation of SCA1+ periportal mesenchymal niche cells that closely surrounds ductal cells in vivo and exerts a dual control on their proliferative capacity. Mesenchymal-secreted mitogens support liver organoid formation and expansion from differentiated ductal cells. However, direct mesenchymal-to-ductal cell-cell contact, established through a microfluidic co-encapsulation method that enables the cells to self-organize into chimeric organoid structures, abolishes ductal cell proliferation in a mesenchyme-dose dependent manner. We found that it is the ratio between mesenchymal and epithelial cell contacts that determines the net outcome of ductal cell proliferation both in vitro, and in vivo, during damage-regeneration. SCA1+ mesenchymal cells control ductal cell proliferation dynamics by a mechanism involving, at least in part, Notch signalling activation. Our findings re-evaluate the concept of the cellular niche, whereby the proportions of cell-cell contacts between the epithelium and its mesenchymal niche, and not the absolute cell numbers, are the key regulatory cues involved in the control of tissue regeneration.


Development ◽  
2001 ◽  
Vol 128 (17) ◽  
pp. 3253-3261 ◽  
Author(s):  
Nirupama Deshpande ◽  
Rainer Dittrich ◽  
Gerhard M. Technau ◽  
Joachim Urban

The Drosophila central nervous system derives from neural precursor cells, the neuroblasts (NBs), which are born from the neuroectoderm by the process of delamination. Each NB has a unique identity, which is revealed by the production of a characteristic cell lineage and a specific set of molecular markers it expresses. These NBs delaminate at different but reproducible time points during neurogenesis (S1-S5) and it has been shown for early delaminating NBs (S1/S2) that their identities depend on positional information conferred by segment polarity genes and dorsoventral patterning genes. We have studied mechanisms leading to the fate specification of a set of late delaminating neuroblasts, NB 6-4 and NB 7-3, both of which arise from the engrailed (en) expression domain, with NB 6-4 delaminating first. In contrast to former reports, we did not find any evidence for a direct role of hedgehog in the process of NB 7-3 specification. Instead, we present evidence to show that the interplay of the segmentation genes naked cuticle (nkd) and gooseberry (gsb), both of which are targets of wingless (wg) activity, leads to differential commitment to NB 6-4 and NB 7-3 cell fate. In the absence of either nkd or gsb, one NB fate is replaced by the other. However, the temporal sequence of delamination is maintained, suggesting that formation and specification of these two NBs are under independent control.


2021 ◽  
Author(s):  
Xuyang Lv ◽  
Jiangchuan Sun ◽  
Linfeng Hu ◽  
Ying Qian ◽  
Chunlei Fan ◽  
...  

Abstract Background: Although curcumol has been shown to possess antitumor effects in several cancers, its effects on glioma are largely unknown. Recently, lncRNAs have been reported to play an oncogenic role through epigenetic modifications. Therefore, here, we investigated whether curcumol inhibited glioma progression by reducing FOXD2-AS1-mediated enhancer of zeste homolog 2 (EZH2) activation.Methods: MTT, colony formation, flow cytometry, Transwell, and neurosphere formation assays were used to assess cell proliferation, cell cycle, apoptosis, the percentage of CD133+ cells, the migration and invasion abilities, and the self-renewal ability. qRT-PCR, western blotting, immunofluorescence, and immunohistochemical staining were used to detect mRNA and protein levels. Isobologram analysis and methylation-specific PCR were used to analyze the effects of curcumol on TMZ resistance in glioma cells. DNA pull-down and Chip assays were employed to explore the molecular mechanism underlying the functions of curcumol in glioma cells. Tumorigenicity was determined using a xenograft formation assay. Results: Curcumol inhibited the proliferation, metastasis, self-renewal ability, and TMZ resistance of glioma cells in vitro and in vivo. FOXD2-AS1 was highly expressed in glioma cell lines, and its expression was suppressed by curcumol treatment in a dose- and time-dependent manner. The forced expression of FOXD2-AS1 abrogated the effect of curcumol on glioma cell proliferation, metastasis, self-renewal ability, and TMZ resistance. Moreover, the forced expression of FOXD2-AS1 reversed the inhibitory effect of curcumol on EZH2 activation.Conclusions: We showed for the first time that curcumol is effective in inhibiting malignant biological behaviors and TMZ-resistance of glioma cells by suppressing FOXD2-AS1-mediated EZH2 activation on anti-oncogenes. Our findings offer the possibility of exploiting curcumol as a promising therapeutic agent for glioma treatment and may provide an option for the clinical application of this natural herbal medicine.


mBio ◽  
2020 ◽  
Vol 11 (3) ◽  
Author(s):  
Cristina Bono ◽  
Alba Martínez ◽  
Javier Megías ◽  
Daniel Gozalbo ◽  
Alberto Yáñez ◽  
...  

ABSTRACT Toll-like receptor (TLR) agonists drive hematopoietic stem and progenitor cells (HSPCs) to differentiate along the myeloid lineage. In this study, we used an HSPC transplantation model to investigate the possible direct interaction of β-glucan and its receptor (dectin-1) on HSPCs in vivo. Purified HSPCs from bone marrow of B6Ly5.1 mice (CD45.1 alloantigen) were transplanted into dectin-1−/− mice (CD45.2 alloantigen), which were then injected with β-glucan (depleted zymosan). As recipient mouse cells do not recognize the dectin-1 agonist injected, interference by soluble mediators secreted by recipient cells is negligible. Transplanted HSPCs differentiated into macrophages in response to depleted zymosan in the spleens and bone marrow of recipient mice. Functionally, macrophages derived from HSPCs exposed to depleted zymosan in vivo produced higher levels of inflammatory cytokines (tumor necrosis factor alpha [TNF-α] and interleukin 6 [IL-6]). These results demonstrate that trained immune responses, already described for monocytes and macrophages, also take place in HSPCs. Using a similar in vivo model of HSPC transplantation, we demonstrated that inactivated yeasts of Candida albicans induce differentiation of HSPCs through a dectin-1- and MyD88-dependent pathway. Soluble factors produced following exposure of HSPCs to dectin-1 agonists acted in a paracrine manner to induce myeloid differentiation and to influence the function of macrophages derived from dectin-1-unresponsive or β-glucan-unexposed HSPCs. Finally, we demonstrated that an in vitro transient exposure of HSPCs to live C. albicans cells, prior to differentiation, is sufficient to induce a trained phenotype of the macrophages they produce in a dectin-1- and Toll-like receptor 2 (TLR2)-dependent manner. IMPORTANCE Invasive candidiasis is an increasingly frequent cause of serious and often fatal infections. Understanding host defense is essential to design novel therapeutic strategies to boost immune protection against Candida albicans. In this article, we delve into two new concepts that have arisen over the last years: (i) the delivery of myelopoiesis-inducing signals by microbial components directly sensed by hematopoietic stem and progenitor cells (HSPCs) and (ii) the concept of “trained innate immunity” that may also apply to HSPCs. We demonstrate that dectin-1 ligation in vivo activates HSPCs and induces their differentiation to trained macrophages by a cell-autonomous indirect mechanism. This points to new mechanisms by which pathogen detection by HSPCs may modulate hematopoiesis in real time to generate myeloid cells better prepared to deal with the infection. Manipulation of this process may help to boost the innate immune response during candidiasis.


2008 ◽  
Vol 21 (04) ◽  
pp. 337-342 ◽  
Author(s):  
M. A. Hossain ◽  
J. Park ◽  
S. H. Choi ◽  
G. Kim

SummaryDexamethasone (Dexa) has been commonly used in humans and domestic animals, particularly in the treatment of tendon injuries and cartilage degeneration. However, it is often associated with tendon rupture and impaired tendon and cartilage healing. In the present study, we investigated Dexa’s in vitro effects on the growth of cell proliferation and the induction of apoptosis in canine Achilles tendon cells and chondrocytes. Cell proliferation after treatment with Dexa for two to six days was quantified by a 2,3-bis{2-methoxy- 4-nitro-5-sulfophenyl}-2H-tetrazolium-5-carboxyanilide inner salt assay (XTT). The results showed that Dexa could inhibit the proliferation of tendon cells and chondrocytes at increasing concentrations (0.1–50 μg/ml) compared with untreated cells. Cell apoptosis was induced by Dexa, as evidenced by the typical nuclear apoptosis using Hoechst 33258 staining. Dexa increased the apoptosis of canine tendon cells and chondrocytes in a time-dependent manner. In canine tendon cells and chondrocytes that were treated with 25 and 50 μg/ml concentration of Dexa, the number of condensed apoptotic nuclei was significantly increased. In addition, culturing with Dexa and the glucocorticoid receptor blocker, mifepristone, significantly arrested apoptosis of tendon cells and chondrocytes. Based on our in vitro data, we hypothesized that in vivo treatment with glucocorticoids may diminish the proliferation of tendon and cartilage cells by increasing apoptosis and suppressing the proliferation. Our findings suggest that Dexa could be used with caution in dogs with articular or tendon problems.


Sign in / Sign up

Export Citation Format

Share Document