scholarly journals Self-organised symmetry breaking in zebrafish reveals feedback from morphogenesis to pattern formation

2019 ◽  
Author(s):  
Vikas Trivedi ◽  
Timothy Fulton ◽  
Andrea Attardi ◽  
Kerim Anlas ◽  
Chaitanya Dingare ◽  
...  

A fundamental question in developmental biology is how the early embryo breaks initial symmetry to establish the spatial coordinate system later important for the organisation of the embryonic body plan. In zebrafish, this is thought to depend on the inheritance of maternal mRNAs [1–3], cortical rotation to generate a dorsal pole of beta-catenin activity [4–8] and the release of Nodal signals from the yolk syncytial layer (YSL) [9–12]. Recent work aggregating mouse embryonic stem cells has shown that symmetry breaking can occur in the absence of extra-embryonic tissue [19,20]. To test whether this is also true in zebrafish, we separated embryonic cells from the yolk and allowed them to develop as aggregates. These aggregates break symmetry autonomously to form elongated structures with an anterior-posterior pattern. Extensive cell mixing shows that any pre-existing asymmetry is lost prior to the breaking morphological symmetry, revealing that the maternal pre-pattern is not strictly required for early embryo patterning. Following early signalling events after isolation of embryonic cells reveals that a pole of Nodal activity precedes and is required for elongation. The blocking of PCP-dependent convergence and extension movements disrupts the establishment of opposing poles of BMP and Wnt/TCF activity and the patterning of anterior-posterior neural tissue. These results lead us to suggest that convergence and extension plays a causal role in the establishment of morphogen gradients and pattern formation during zebrafish gastrulation.

2016 ◽  
Author(s):  
D.A. Turner ◽  
C.R. Glodowski ◽  
L. Alonso-Crisostomo ◽  
P. Baillie-Johnson ◽  
P.C. Hayward ◽  
...  

AbstractGeneration of asymmetry within the early embryo is a critical step in the establishment of the three body axes, providing a reference for the patterning of the organism. To study the establishment of asymmetry and the development of the anteroposterior axis (AP) in culture, we utilised our ‘Gastruloid’ model system. ‘Gastruloids’, highly reproducible embryonic organoids formed from aggregates of mouse embryonic stem cells, display symmetry-breaking, polarised gene expression and axial development, mirroring the processes on a time-scale similar to that of the mouse embyro. Using Gastruloids formed from mouse ESCs containing reporters for Wnt, FGF and Nodal signalling, we were able to quantitatively assess the contribution of these signalling pathways to the establishment of asymmetry through single time-point and live-cell fluorescence microscopy.During the first 24-48h of culture, interactions between the Wnt/β-Catenin and Nodal/TGF/β signalling pathways promote the initial symmetry-breaking event, manifested through polarised Brachyury (T/Bra) expression. Neither BMP nor FGF signalling is required for the establishment of asymmetry, however Wnt signalling is essential for the amplification and stability of the initial patterning event. Additionally, low, endogenous levels of FGF (24-48h) has a role in the amplification of the established pattern at later time-points.Our results confirm that Gastruloids behave like epiblast cells in the embryo, leading us to translate the processes and signalling involved in pattern formation of Gastruloids in culture to the development of the embryo, firmly establishing Gastruloids as a highly reproducible, robust model system for studying cell fate decisions and early pattern formation in culture.


Development ◽  
1991 ◽  
Vol 113 (Supplement_1) ◽  
pp. 27-38 ◽  
Author(s):  
Gerd Jürgens ◽  
Ulrike Mayer ◽  
Torres Ruiz Ramon A. ◽  
Thomas Berleth ◽  
Simon Miséra

Virtually nothing is known about the mechanisms that generate the basic body pattern in plant embryogenesis. As a first step towards the analysis of pattern formation, we have isolated and begun to characterise putative pattern mutants in the flowering plant, Arabidopsis thaliana. A large-scale screen for morphologically abnormal seedling mutants yielded about 250 lines for further study, and genetic evidence suggests saturation of the genome for this kind of mutation. The phenotypes of putative pattern mutants fall into distinct categories, classes and groups, which may reflect specific aspects of embryonic pattern formation. Mutant seedling phenotypes result from abnormal development in the early embryo. The implications of our findings are discussed with regard to the prospects for a mechanistic understanding of pattern formation in the plant embryo.


2007 ◽  
Vol 18 (2) ◽  
pp. 669-677 ◽  
Author(s):  
Shuwen Wang ◽  
Chunguang Hu ◽  
Jiyue Zhu

The human telomerase reverse transcriptase hTERT is highly expressed in undifferentiated embryonic cells and silenced in the majority of somatic cells. To investigate the mechanisms of hTERT silencing, we have developed a novel reporter using a bacterial artificial chromosome (BAC) that contained the entire hTERT gene and its neighboring loci, hCRR9 and hXtrp2. Firefly and Renilla luciferases were used to monitor transcription from the hTERT and hCRR9 promoters, respectively. In mouse embryonic stem cells stably integrated with the BAC reporter, both hTERT and hCRR9 promoters were highly expressed. Upon differentiation into embryoid bodies and further into mineral-producing osteogenic cells, the hTERT promoter activity decreased progressively, whereas the hCRR9 promoter remained highly active, both resembling their endogenous counterparts. In fully differentiated cells, the hTERT promoter was completely silenced and adopted a chromatin structure that was similar to its native counterpart in human cells. Inhibition of histone deacetylases led to the opening of the hTERT promoter and partially relieved repression, suggesting that histone deacetylation was necessary but not sufficient for hTERT silencing. Thus, our result demonstrated that developmental silencing of the human TERT locus could be recapitulated in a chromosomal position-independent manner during the differentiation of mouse embryonic stem cells.


2018 ◽  
Author(s):  
Naor Sagy ◽  
Shaked Slovin ◽  
Maya Allalouf ◽  
Maayan Pour ◽  
Gaya Savyon ◽  
...  

AbstractDuring early embryogenesis, mechanical signals, localized biochemical signals and neighboring cell layers interaction coordinate around anteroposterior axis determination and symmetry breaking. Deciphering their relative roles, which are hard to tease apart in vivo, will enhance our understanding of how these processes are driven. In recent years, in vitro 3D models of early mammalian development, such as embryoid bodies (EBs) and gastruloids, were successful in mimicking various aspects of the early embryo, providing high throughput accessible systems for studying the basic rules shaping cell fate and morphology during embryogenesis. Using Brachyury (Bry), a primitive streak and mesendoderm marker in EBs, we study how contact, biochemical and neighboring cell cues affect the positioning of a primitive streak-like locus, determining the AP axis. We show that a Bry-competent layer must be formed in the EB before Bry expression initiates, and that Bry onset locus selection depends on contact points of the EB with its surrounding. We can maneuver Bry onset to occur at a specific locus, a few loci, or in an isotropic peripheral pattern. By spatially separating contact and biochemical signal sources, we show these two modalities can be integrated by the EB to generate a single Bry locus. Finally, we show Foxa2+ cells are predictive of the future location of Bry onset, demonstrating an earlier symmetry-breaking event. By delineating the temporal signaling pathway dependencies of Bry and Foxa2, we were able to selectively abolish either, or spatially decouple the two cell types during EB differentiation. These findings demonstrate multiple inputs integration during an early developmental process, and may prove valuable in directing in vitro differentiation.


2021 ◽  
Author(s):  
Majid Mehravar ◽  
Yogesh Kumar ◽  
Moshe Olshansky ◽  
Dhiru Bansal ◽  
Craig Dent ◽  
...  

N6-methyladenosine (m6A) is the most predominant internal mRNA modification in eukaryotes, recognised by its reader proteins (so-called m6A-readers) for regulating subsequent mRNA fates, such as splicing, export, localisation, decay, stability, and translation to control several biological processes. Although a few m6A-readers have been identified, yet the list is incomplete. Here, we identify a new m6A-reader protein, Moloney leukaemia virus 10 homologue (MOV10), in mouse embryonic stem cells (mESCs). MOV10 recognises m6A-containing mRNAs with a conserved GGm6ACU motif. Mechanistic studies uncover that MOV10 facilitates mRNA decay of its bound m6A- containing mRNAs in an m6A-dependent manner within the cytoplasmic processing bodies (P-bodies). Furthermore, MOV10 decays the Gsk-3beta mRNA through m6A that stabilises the BETA-CATENIN expression of a WNT/BETA-CATENIN signalling pathway to regulate downstream NANOG expression for maintaining the mESC state. Thus, our findings reveal how a newly identified m6A-reader, MOV10 mediates mRNA decay via m6A that impact embryonic stem cell biology.


2022 ◽  
Author(s):  
Ninel Miriam Vainshelbaum ◽  
Kristine Salmina ◽  
Bogdan I Gerashchenko ◽  
Marija Lazovska ◽  
Pawel Zayakin ◽  
...  

The Circadian Clock (CC) drives the normal cell cycle and reciprocally regulates telomere elongation. However, it can be deregulated in cancer, embryonic stem cells (ESC) and the early embryo. Here, its role in the resistance of cancer cells to genotoxic treatments was assessed in relation to whole-genome duplication (WGD) and telomere regulation. We first evaluated the DNA damage response of polyploid cancer cells and observed a similar impact on the cell cycle to that seen in ESC - overcoming G1/S, adapting DNA damage checkpoints, tolerating DNA damage, and coupling telomere erosion to accelerated cell senescence, favouring transition by mitotic slippage into the ploidy cycle (reversible polyploidy). Next, we revealed a positive correlation between cancer WGD and deregulation of CC assessed by bioinformatics on 11 primary cancer datasets (rho=0.83; p<0.01). As previously shown, the cancer cells undergoing mitotic slippage cast off telomere fragments with TERT, restore the telomeres by recombination and return their depolyploidised mitotic offspring to TERT-dependent telomere regulation. Through depolyploidisation and the CC "death loop", the telomeres and Hayflick limit count are thus again renewed. This mechanism along with similar inactivity of the CC in early embryos supports a life-cycle (embryonic) concept of cancer.


2018 ◽  
Author(s):  
Mijo Simunovic ◽  
Jakob J. Metzger ◽  
Fred Etoc ◽  
Anna Yoney ◽  
Albert Ruzo ◽  
...  

ABSTRACTBreaking the anterior-posterior (AP) symmetry in mammals takes place at gastrulation. Much of the signaling network underlying this process has been elucidated in the mouse, however there is no direct molecular evidence of events driving axis formation in humans. Here, we use human embryonic stem cells to generate an in vitro 3D model of a human epiblast whose size, cell polarity, and gene expression are similar to a 10-day human epiblast. A defined dose of bone mor-phogenetic protein 4 (BMP4) spontaneously breaks axial symmetry, and induces markers of the primitive streak and epithelial to mesenchymal transition. By gene knockouts and live-cell imaging we show that, downstream of BMP4, WNT3 and its inhibitor DKK1 play key roles in this process. Our work demonstrates that a model human epiblast can break axial symmetry despite no asymmetry in the initial signal and in the absence of extraembryonic tissues or maternal cues. Our 3D model opens routes to capturing molecular events underlying axial symmetry breaking phenomena, which have largely been unexplored in model human systems.


2018 ◽  
Author(s):  
Marcin Leda ◽  
Andrew J. Holland ◽  
Andrew B. Goryachev

SummarySymmetry breaking, a central principle of physics, has been hailed as the driver of self-organization in biological systems in general and biogenesis of cellular organelles in particular, but the molecular mechanisms of symmetry breaking only begin to become understood. Centrioles, the structural cores of centrosomes and cilia, must duplicate every cell cycle to ensure their faithful inheritance through cellular divisions. Work in model organisms identified conserved proteins required for centriole duplication and found that altering their abundance affects centriole number. However, the biophysical principles that ensure that, under physiological conditions, only a single procentriole is produced on each mother centriole remain enigmatic. Here we propose a mechanistic biophysical model for the initiation of procentriole formation in mammalian cells. We posit that interactions between the master regulatory kinase PLK4 and its activator-substrate STIL form the basis of the procentriole initiation network. The model faithfully recapitulates the experimentally observed transition from PLK4 uniformly distributed around the mother centriole, the “ring”, to a unique PLK4 focus, the “spot”, that triggers the assembly of a new procentriole. This symmetry breaking requires a dual positive feedback based on autocatalytic activation of PLK4 and enhanced centriolar anchoring of PLK4-STIL complexes by phosphorylated STIL. We find that, contrary to previous proposals,in situdegradation of active PLK4 is insufficient to break symmetry. Instead, the model predicts that competition between transient PLK4 activity maxima for PLK4-STIL complexes explains both the instability of the PLK4 ring and formation of the unique PLK4 spot. In the model, strong competition at physiologically normal parameters robustly produces a single procentriole, while increasing overexpression of PLK4 and STIL weakens the competition and causes progressive addition of procentrioles in agreement with experimental observations.


Sign in / Sign up

Export Citation Format

Share Document