scholarly journals In vivo and in vitro human gene essentiality estimations capture contrasting functional constraints

2019 ◽  
Author(s):  
JL Caldu-Primo ◽  
JA Verduzco-Martínez ◽  
ER Alvarez-Buylla ◽  
J Davila-Velderrain

AbstractGene essentiality estimation is a popular empirical approach to link genotypes to phenotypes. In humans, essentiality is estimated based on loss-of-function (LoF) mutation intolerance, either from population exome sequencing (in vivo) data or CRISPR-based in vitro perturbation experiments. Both approaches identify genes presumed to have strong detrimental consequences on the organism upon mutation. Are these genes functionally distinct and constrained by having key roles? Do in vivo and in vitro estimations equally recover these constraints? To address these questions, here we integrated disparate genome-scale datasets and compared structural, functional, and evolutionary features of essential genes versus genes with extremely high mutational tolerance and proteome expectation. We found that essentiality estimates do recover functional constraints. However, the organismal or cellular context of estimation leads to functionally contrasting properties underlying the constraint. Our results suggest that depletion of LoF mutations in human populations effectively captures developmental, organismal-level functional constraints not experimentally accessible through CRISPR-based screens. Finally, we identify a new set of genes (OrgEssential), which are intolerant of LoF mutation in vivo but highly tolerant in vitro. These genes drive observed functional constraint differences and have an unexpected preference for nervous system expression.

2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Jose Luis Caldu-Primo ◽  
Jorge Armando Verduzco-Martínez ◽  
Elena R Alvarez-Buylla ◽  
Jose Davila-Velderrain

Abstract Gene essentiality estimation is a popular empirical approach to link genotypes to phenotypes. In humans, essentiality is estimated based on loss-of-function (LoF) mutation intolerance, either from population exome sequencing (in vivo) data or CRISPR-based in vitro perturbation experiments. Both approaches identify genes presumed to have detrimental consequences on the organism upon mutation. Are these genes constrained by having key cellular/organismal roles? Do in vivo and in vitro estimations equally recover these constraints? Insights into these questions have important implications in generalizing observations from cell models and interpreting disease risk genes. To empirically address these questions, we integrate genome-scale datasets and compare structural, functional and evolutionary features of essential genes versus genes with extremely high mutational tolerance. We found that essentiality estimates do recover functional constraints. However, the organismal or cellular context of estimation leads to functionally contrasting properties underlying the constraint. Our results suggest that depletion of LoF mutations in human populations effectively captures organismal-level functional constraints not experimentally accessible through CRISPR-based screens. Finally, we identify a set of genes (OrgEssential), which are mutationally intolerant in vivo but highly tolerant in vitro. These genes drive observed functional constraint differences and have an unexpected preference for nervous system expression.


2015 ◽  
Vol 113 (1) ◽  
pp. 182-187 ◽  
Author(s):  
Christina H. Eng ◽  
Zuncai Wang ◽  
Diane Tkach ◽  
Lourdes Toral-Barza ◽  
Savuth Ugwonali ◽  
...  

Macroautophagy is a key stress-response pathway that can suppress or promote tumorigenesis depending on the cellular context. Notably, Kirsten rat sarcoma (KRAS)-driven tumors have been reported to rely on macroautophagy for growth and survival, suggesting a potential therapeutic approach of using autophagy inhibitors based on genetic stratification. In this study, we evaluated whether KRAS mutation status can predict the efficacy to macroautophagy inhibition. By profiling 47 cell lines with pharmacological and genetic loss-of-function tools, we were unable to confirm that KRAS-driven tumor lines require macroautophagy for growth. Deletion of autophagy-related 7 (ATG7) by genome editing completely blocked macroautophagy in several tumor lines with oncogenic mutations in KRAS but did not inhibit cell proliferation in vitro or tumorigenesis in vivo. Furthermore, ATG7 knockout did not sensitize cells to irradiation or to several anticancer agents tested. Interestingly, ATG7-deficient and -proficient cells were equally sensitive to the antiproliferative effect of chloroquine, a lysosomotropic agent often used as a pharmacological tool to evaluate the response to macroautophagy inhibition. Moreover, both cell types manifested synergistic growth inhibition when treated with chloroquine plus the tyrosine kinase inhibitors erlotinib or sunitinib, suggesting that the antiproliferative effects of chloroquine are independent of its suppressive actions on autophagy.


Blood ◽  
2009 ◽  
Vol 113 (5) ◽  
pp. 1192-1199 ◽  
Author(s):  
Chang Z. Chun ◽  
Sukhbir Kaur ◽  
Ganesh V. Samant ◽  
Ling Wang ◽  
Kallal Pramanik ◽  
...  

Abstract In vertebrates, molecular mechanisms dictate angioblasts' migration and subsequent differentiation into arteries and veins. In this study, we used a microarray screen to identify a novel member of the sucrose nonfermenting related kinase (snrk-1) family of serine/threonine kinases expressed specifically in the embryonic zebrafish vasculature and investigated its function in vivo. Using gain- and loss-of-function studies in vivo, we show that Snrk-1 plays an essential role in the migration, maintenance, and differentiation of angioblasts. The kinase function of Snrk-1 is critical for migration and maintenance, but not for the differentiation of angioblasts. In vitro, snrk-1 knockdown endothelial cells show only defects in migration. The snrk-1 gene acts downstream or parallel to notch and upstream of gridlock during artery-vein specification, and the human gene compensates for zebrafish snrk-1 knockdown, suggesting evolutionary conservation of function.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Chengwu Xiao ◽  
Wei Zhang ◽  
Meimian Hua ◽  
Huan Chen ◽  
Bin Yang ◽  
...  

Abstract Background The tripartite motif (TRIM) family proteins exhibit oncogenic roles in various cancers. The roles of TRIM27, a member of the TRIM super family, in renal cell carcinoma (RCC) remained unexplored. In the current study, we aimed to investigate the clinical impact and roles of TRIM27 in the development of RCC. Methods The mRNA levels of TRIM27 and Kaplan–Meier survival of RCC were analyzed from The Cancer Genome Atlas database. Real-time PCR and Western blotting were used to measure the mRNA and protein levels of TRIM27 both in vivo and in vitro. siRNA and TRIM27 were exogenously overexpressed in RCC cell lines to manipulate TRIM27 expression. Results We discovered that TRIM27 was elevated in RCC patients, and the expression of TRIM27 was closely correlated with poor prognosis. The loss of function and gain of function results illustrated that TRIM27 promotes cell proliferation and inhibits apoptosis in RCC cell lines. Furthermore, TRIM27 expression was positively associated with NF-κB expression in patients with RCC. Blocking the activity of NF-κB attenuated the TRIM27-mediated enhancement of proliferation and inhibition of apoptosis. TRIM27 directly interacted with Iκbα, an inhibitor of NF-κB, to promote its ubiquitination, and the inhibitory effects of TRIM27 on Iκbα led to NF-κB activation. Conclusions Our results suggest that TRIM27 exhibits an oncogenic role in RCC by regulating NF-κB signaling. TRIM27 serves as a specific prognostic indicator for RCC, and strategies targeting the suppression of TRIM27 function may shed light on future therapeutic approaches.


2021 ◽  
Vol 26 (1) ◽  
Author(s):  
Guoying Zhang ◽  
Cheng Xue ◽  
Yiming Zeng

Abstract Background We have previously found that β-elemene could inhibit the viability of airway granulation fibroblasts and prevent airway hyperplastic stenosis. This study aimed to elucidate the underlying mechanism and protective efficacy of β-elemene in vitro and in vivo. Methods Microarray and bioinformatic analysis were used to identify altered pathways related to cell viability in a β-elemene-treated primary cell model and to construct a β-elemene-altered ceRNA network modulating the target pathway. Loss of function and gain of function approaches were performed to examine the role of the ceRNA axis in β-elemene's regulation of the target pathway and cell viability. Additionally, in a β-elemene-treated rabbit model of airway stenosis, endoscopic and histological examinations were used to evaluate its therapeutic efficacy and further verify its mechanism of action. Results The hyperactive ILK/Akt pathway and dysregulated LncRNA-MIR143HG, which acted as a miR-1275 ceRNA to modulate ILK expression, were suppressed in β-elemene-treated airway granulation fibroblasts; β-elemene suppressed the ILK/Akt pathway via the MIR143HG/miR-1275/ILK axis. Additionally, the cell cycle and apoptotic phenotypes of granulation fibroblasts were altered, consistent with ILK/Akt pathway activity. In vivo application of β-elemene attenuated airway granulation hyperplasia and alleviated scar stricture, and histological detections suggested that β-elemene's effects on the MIR143HG/miR-1275/ILK axis and ILK/Akt pathway were in line with in vitro findings. Conclusions MIR143HG and ILK may act as ceRNA to sponge miR-1275. The MIR143HG/miR-1275/ILK axis mediates β-elemene-induced cell cycle arrest and apoptosis of airway granulation fibroblasts by modulating the ILK/Akt pathway, thereby inhibiting airway granulation proliferation and ultimately alleviating airway stenosis.


2001 ◽  
Vol 193 (11) ◽  
pp. 1295-1302 ◽  
Author(s):  
Megan K. Levings ◽  
Romina Sangregorio ◽  
Maria-Grazia Roncarolo

Active suppression by T regulatory (Tr) cells plays an important role in the downregulation of T cell responses to foreign and self-antigens. Mouse CD4+ Tr cells that express CD25 possess remarkable suppressive activity in vitro and in autoimmune disease models in vivo. Thus far, the existence of a similar subset of CD25+CD4+ Tr cells in humans has not been reported. Here we show that human CD25+CD4+ Tr cells isolated from peripheral blood failed to proliferate and displayed reduced expression of CD40 ligand (CD40L), in response to T cell receptor–mediated polyclonal activation, but strongly upregulated cytotoxic T lymphocyte–associated antigen (CTLA)-4. Human CD25+CD4+ Tr cells also did not proliferate in response to allogeneic antigen-presenting cells, but they produced interleukin (IL)-10, transforming growth factor (TGF)-β, low levels of interferon (IFN)-γ, and no IL-4 or IL-2. Importantly, CD25+CD4+ Tr cells strongly inhibited the proliferative responses of both naive and memory CD4+ T cells to alloantigens, but neither IL-10, TGF-β, nor CTLA-4 seemed to be directly required for their suppressive effects. CD25+CD4+ Tr cells could be expanded in vitro in the presence of IL-2 and allogeneic feeder cells and maintained their suppressive capacities. These findings that CD25+CD4+ Tr cells with immunosuppressive effects can be isolated from peripheral blood and expanded in vitro without loss of function represent a major advance towards the therapeutic use of these cells in T cell–mediated diseases.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jie Wang ◽  
Zhiwei He ◽  
Jian Xu ◽  
Peng Chen ◽  
Jianxin Jiang

AbstractAn accumulation of evidence indicates that long noncoding RNAs are involved in the tumorigenesis and progression of pancreatic cancer (PC). In this study, we investigated the functions and molecular mechanism of action of LINC00941 in PC. Quantitative PCR was used to examine the expression of LINC00941 and miR-335-5p in PC tissues and cell lines, and to investigate the correlation between LINC00941 expression and clinicopathological features. Plasmid vectors or lentiviruses were used to manipulate the expression of LINC00941, miR-335-5p, and ROCK1 in PC cell lines. Gain or loss-of-function assays and mechanistic assays were employed to verify the roles of LINC00941, miR-335-5p, and ROCK1 in PC cell growth and metastasis, both in vivo and in vitro. LINC00941 and ROCK1 were found to be highly expressed in PC, while miR-335-5p exhibited low expression. High LINC00941 expression was strongly associated with larger tumor size, lymph node metastasis, and poor prognosis. Functional experiments revealed that LINC00941 silencing significantly suppressed PC cell growth, metastasis and epithelial–mesenchymal transition. LINC00941 functioned as a molecular sponge for miR-335-5p, and a competitive endogenous RNA (ceRNA) for ROCK1, promoting ROCK1 upregulation, and LIMK1/Cofilin-1 pathway activation. Our observations lead us to conclude that LINC00941 functions as an oncogene in PC progression, behaving as a ceRNA for miR-335-5p binding. LINC00941 may therefore have potential utility as a diagnostic and treatment target in this disease.


Author(s):  
Jin-Chun Qi ◽  
Zhan Yang ◽  
Tao Lin ◽  
Long Ma ◽  
Ya-Xuan Wang ◽  
...  

Abstract Background Both E2F transcription factor and cyclin-dependent kinases (CDKs), which increase or decrease E2F activity by phosphorylating E2F or its partner, are involved in the control of cell proliferation, and some circRNAs and miRNAs regulate the expression of E2F and CDKs. However, little is known about whether dysregulation among E2Fs, CDKs, circRNAs and miRNAs occurs in human PCa. Methods The expression levels of CDK13 in PCa tissues and different cell lines were determined by quantitative real-time PCR and Western blot analysis. In vitro and in vivo assays were preformed to explore the biological effects of CDK13 in PCa cells. Co-immunoprecipitation anlysis coupled with mass spectrometry was used to identify E2F5 interaction with CDK13. A CRISPR-Cas9 complex was used to activate endogenous CDK13 and circCDK13 expression. Furthermore, the mechanism of circCDK13 was investigated by using loss-of-function and gain-of-function assays in vitro and in vivo. Results Here we show that CDK13 is significantly upregulated in human PCa tissues. CDK13 depletion and overexpression in PCa cells decrease and increase, respectively, cell proliferation, and the pro-proliferation effect of CDK13 is strengthened by its interaction with E2F5. Mechanistically, transcriptional activation of endogenous CDK13, but not the forced expression of CDK13 by its expression vector, remarkably promotes E2F5 protein expression by facilitating circCDK13 formation. Further, the upregulation of E2F5 enhances CDK13 transcription and promotes circCDK13 biogenesis, which in turn sponges miR-212-5p/449a and thus relieves their repression of the E2F5 expression, subsequently leading to the upregulation of E2F5 expression and PCa cell proliferation. Conclusions These findings suggest that CDK13 upregulation-induced formation of the positive feedback loop among circCDK13, miR-212-5p/miR-449a and E2F5 is responsible for PCa development. Targeting this newly identified regulatory axis may provide therapeutic benefit against PCa progression and drug resistance.


2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Jian-Ping Zhang ◽  
Wei-Jing Zhang ◽  
Miao Yang ◽  
Hua Fang

Abstract Background Propofol, an intravenous anesthetic, was proven to protect against lung ischemia/reperfusion (I/R) injury. However, the detailed mechanism of Propofol in lung I/R injury is still elusive. This study was designed to explore the therapeutic effects of Propofol, both in vivo and in vitro, on lung I/R injury and the underlying mechanisms related to metastasis-associated lung adenocarcinoma transcript 1 (MALAT1)/microRNA-144 (miR-144)/glycogen synthase kinase-3β (GSK3β). Methods C57BL/6 mice were used to establish a lung I/R injury model while pulmonary microvascular endothelial cells (PMVECs) were constructed as hypoxia/reperfusion (H/R) cellular model, both of which were performed with Propofol treatment. Gain- or loss-of-function approaches were subsequently employed, followed by observation of cell apoptosis in lung tissues and evaluation of proliferative and apoptotic capabilities in H/R cells. Meanwhile, the inflammatory factors, autophagosomes, and autophagy-related proteins were measured. Results Our experimental data revealed that Propofol treatment could decrease the elevated expression of MALAT1 following I/R injury or H/R induction, indicating its protection against lung I/R injury. Additionally, overexpressing MALAT1 or GSK3β promoted the activation of autophagosomes, proinflammatory factor release, and cell apoptosis, suggesting that overexpressing MALAT1 or GSK3β may reverse the protective effects of Propofol against lung I/R injury. MALAT1 was identified to negatively regulate miR-144 to upregulate the GSK3β expression. Conclusion Overall, our study demonstrated that Propofol played a protective role in lung I/R injury by suppressing autophagy and decreasing release of inflammatory factors, with the possible involvement of the MALAT1/miR-144/GSK3β axis.


Sign in / Sign up

Export Citation Format

Share Document