scholarly journals Data-driven inference of crosstalk in the tumor microenvironment

2019 ◽  
Author(s):  
Umesh Ghoshdastider ◽  
Marjan Mojtabavi Naeini ◽  
Neha Rohatgi ◽  
Egor Revkov ◽  
Angeline Wong ◽  
...  

AbstractSignaling between cancer and nonmalignant (stromal) cells in the tumor microenvironment (TME) is key to tumorigenesis yet challenging to decipher from tumor transcriptomes. Here, we report an unbiased, data-driven approach to deconvolute bulk tumor transcriptomes and predict crosstalk between ligands and receptors on cancer and stromal cells in the TME of 20 solid tumor types. Our approach recovers known transcriptional hallmarks of cancer and stromal cells and is concordant with single-cell and immunohistochemistry data, underlining its robustness. Pan-cancer analysis reveals previously unrecognized features of cancer-stromal crosstalk. We find that autocrine cancer cell cross-talk varied between tissues but often converged on known cancer signaling pathways. In contrast, many stromal cross-talk interactions were highly conserved across tumor types. Interestingly, the immune checkpoint ligand PD-L1 was overexpressed in stromal rather than cancer cells across all tumor types. Moreover, we predicted and experimentally validated aberrant ligand and receptor expression in cancer cells of basal and luminal breast cancer, respectively. Collectively, our findings validate a data-driven method for tumor transcriptome deconvolution and establishes a new resource for hypothesis generation and downstream functional interrogation of the TME in tumorigenesis and disease progression.

2020 ◽  
Author(s):  
Neha Rohatgi ◽  
Umesh Ghoshdastider ◽  
Probhonjon Baruah ◽  
Anders Jacobsen Skanderup

AbstractTumors are heterogeneous cellular environments with entwined metabolic dependencies. Here, we used a tumor transcriptome deconvolution approach to profile the metabolic states of cancer and non-cancer (stromal) cells in bulk tumors of 20 solid tumor types. We identified metabolic genes and processes recurrently altered in cancer cells across tumor types, including pan-cancer upregulation of deoxythymidine triphosphate (dTTP) production. In contrast, the tryptophan catabolism rate limiting enzymes, IDO1 and TDO2, were highly overexpressed in stroma, suggesting that kynurenine-mediated suppression of antitumor immunity is predominantly constrained by the stroma. Oxidative phosphorylation was unexpectedly the most upregulated metabolic process in cancer cells compared to both stromal cells and a large atlas of cancer cell lines, suggesting that the Warburg effect may be less pronounced in cancer cells in vivo. Overall, our analysis highlights fundamental differences in metabolic states of cancer and stromal cells inside tumors and establishes a pan-cancer resource to interrogate tumor metabolism.


Cancers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 3191
Author(s):  
Katherine Po Sin Chung ◽  
Rainbow Wing Hei Leung ◽  
Terence Kin Wah Lee

Cancer stem cells (CSCs) within the tumor bulk play crucial roles in tumor initiation, recurrence and therapeutic resistance. In addition to intrinsic regulation, a growing body of evidence suggests that the phenotypes of CSCs are also regulated extrinsically by stromal cells in the tumor microenvironment (TME). Here, we discuss the current knowledge of the interplay between stromal cells and cancer cells with a special focus on how stromal cells drive the stemness of cancer cells and immune evasive mechanisms of CSCs. Knowledge gained from the interaction between CSCs and stromal cells will provide a mechanistic basis for the development of novel therapeutic strategies for the treatment of cancers.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Linbang Wang ◽  
Tao He ◽  
Jingkun Liu ◽  
Jiaojiao Tai ◽  
Bing Wang ◽  
...  

Abstract Background Tumor-associated macrophages (TAMs) are abundant in the tumor microenvironment (TME). However, their contribution to the immunosuppressive status of the TME remains unclear. Methods We integrated single-cell sequencing and transcriptome data from different tumor types to uncover the molecular features of TAMs. In vitro experiments and prospective clinical tests confirmed the results of these analysis. Results We first detected intra- and inter-tumoral heterogeneities between TAM subpopulations and their functions, with CD86+ TAMs playing a crucial role in tumor progression. Next, we focused on the ligand-receptor interactions between TAMs and tumor cells in different TME phenotypes and discovered that aberrant expressions of six hub genes, including FLI1, are involved in this process. A TAM-tumor cell co-culture experiment proved that FLI1 was involved in tumor cell invasion, and FLI1 also showed a unique pattern in patients. Finally, TAMs were discovered to communicate with immune and stromal cells. Conclusion We determined the role of TAMs in the TME by focusing on their communication pattern with other TME components. Additionally, the screening of hub genes revealed potential therapeutic targets.


2019 ◽  
Vol 20 (2) ◽  
pp. 377 ◽  
Author(s):  
Giulia Franzolin ◽  
Luca Tamagnone

The inflammatory and immune response elicited by the growth of cancer cells is a major element conditioning the tumor microenvironment, impinging on disease progression and patients’ prognosis. Semaphorin receptors are widely expressed in inflammatory cells, and their ligands are provided by tumor cells, featuring an intense signaling cross-talk at local and systemic levels. Moreover, diverse semaphorins control both cells of the innate and the antigen-specific immunity. Notably, semaphorin signals acting as inhibitors of anti-cancer immune response are often dysregulated in human tumors, and may represent potential therapeutic targets. In this mini-review, we provide a survey of the best known semaphorin regulators of inflammatory and immune cells, and discuss their functional impact in the tumor microenvironment.


Author(s):  
Satish S. Poojary ◽  
Maryam Ghufran ◽  
Ananya Choudhary ◽  
Mehreen Aftab

2019 ◽  
Vol 21 (Supplement_3) ◽  
pp. iii52-iii52
Author(s):  
P Busek ◽  
M Zubal ◽  
B Chmielova ◽  
Z Vanickova ◽  
P Hrabal ◽  
...  

Abstract BACKGROUND Fibroblast activation protein (FAP) is a transmembrane serine protease that is frequently upregulated in the tumor microenvironment. In several cases, FAP protein itself and/or FAP expressing stromal cells have been shown to contribute to cancer progression and to be associated with more aggressive cancer behaviour and shorter patient survival. The aim of this study was to determine FAP expression in glioblastomas and brain metastases and to identify the cell types that express FAP in the microenvironment of these malignancies. MATERIAL AND METHODS FAP enzymatic activity and protein concentration were determined in samples from patients with brain metastases, glioblastomas and pharmacoresistant epilepsy (control non-tumorous brain tissue) by an enzymatic assay using a specific fluorogenic substrate and ELISA, respectively. Immunohistochemical labelling with antibodies against FAP and markers of astroglia, epithelial cancer cells and mesenchymal stromal cells was performed to characterize FAP expressing cells. RESULTS FAP was significantly upregulated in the majority of glioblastomas and brain metastases in comparison to non-tumorous brain tissue. In glioblastomas, FAP was localized perivascularly and in mesenchymal cells, and in part of the tumors also in the glioma cells. In brain metastases, FAP positivity was abundantly present in the stroma and predominantly co-localised with markers of mesenchymal stromal cells (TE-7, SMA, PDGFRbeta, NG2), but there was no overlap between FAP and markers of epithelial cancer cells (EpCAM, pancytokeratin). CONCLUSION FAP is upregulated in the microenvironment of human glioblastomas and brain metastases compared to non-tumorous brain tissue. In glioblastomas, FAP is expressed in part of the glioma cells, in pericytes and mesenchymal stromal cells, whereas no positivity in cancer cells and more abundant FAP+ stroma was detected in brain metastases. The selective expression of FAP in these brain tumors may be useful for the visualization and possibly therapeutic targeting of their tumor microenvironment. GRANT SUPPORT Ministry of Health of the Czech Republic, grant No. 15-31379A, Progres Q28/LF1, 2015064 LM EATRIS and the project,Center for Tumor Ecology - Research of the Cancer Microenvironment Supporting Cancer Growth and Spread” (reg. n. CZ.02.1.01/0.0/0.0/16_019/0000785) supported by the Operational Programme Research, Development and Education.


2020 ◽  
Vol 9 (1) ◽  
pp. 143 ◽  
Author(s):  
Cinzia Fionda ◽  
Helena Stabile ◽  
Cristina Cerboni ◽  
Alessandra Soriani ◽  
Angela Gismondi ◽  
...  

Transforming growth factor (TGF)-β is a central immunosuppressive cytokine within tumor microenvironment inhibiting the expansion and function of major cellular components of adaptive and innate immune system. Among them, compelling evidence has demonstrated that TGF-β is a key regulator of natural killer (NK) cells, innate lymphoid cells (ILCs) with a critical role in immunosurveillance against different kinds of cancer cells. A TGF-β rich tumor microenvironment blocks NK cell activity at multiple levels. This immunosuppressive factor exerts direct regulatory effects on NK cells including inhibition of cytokine production, alteration of activating/inhibitory receptor expression, and promotion of the conversion into non cytotoxic group I ILC (ILC1). Concomitantly, TGF-β can render tumor cells less susceptible to NK cell-mediated recognition and lysis. Indeed, accumulating evidence suggest that changes in levels of NKG2D ligands, mainly MICA, as well as an increase of immune checkpoint inhibitors (e.g., PD-L1) and other inhibitory ligands on cancer cells significantly contribute to TGF-β-mediated suppression of NK cell activity. Here, we will take into consideration two major mechanisms underlying the negative regulation of ILC function by TGF-β in cancer. First, we will address how TGF-β impacts the balance of signals governing NK cell activity. Second, we will review recent advances on the role of this cytokine in driving ILC plasticity in cancer. Finally, we will discuss how the development of therapeutic approaches blocking TGF-β may reverse the suppression of host immune surveillance and improve anti-tumor NK cell response in the clinic.


Author(s):  
Kevin Dzobo

Current therapeutic strategies targeting cancer cells within solid tumors have displayed limited success owing to the presence of non-cancer components referred to as the tumor stroma within the tumor microenvironment (TM). These stromal cells, extracellular matrix and blood vessels influence cancer cell response to therapy and play key roles in tumor relapse and resistance. Of the stromal cells present in the TM, a lot of attention has been given to cancer-associated fibroblasts (CAFs) as they are the most abundant and are important in cancer initiation, progression and therapy resistance. In this updated review I emphasize the role of CAFs in the regulation of tumor cell behaviour and reveal how CAF-derived factors and signaling influence tumor cell heterogeneity and development of novel strategies to combat cancer. To investigate the expression of CAF markers in tumor tissues versus normal tissues, transcriptomic data from The Cancer Genome Atlas (TCGA) and the Gene Expression Profiling Interactive Analysis (GEPIA) databases was used. Bioinformatic analysis reveals differential expression of CAF markers in several cancer types, underscoring the need for further multiomics and biochemical studies on CAFs, CAF subsets and markers. Differences in CAF markers’ expression could be due to different cellular origins as well as the effect of cancer-specific tumor microenvironmental effect on CAFs. Lastly, I present recent advances in therapeutic targeting of CAFs and the success of such endeavours or its lack thereof. It is recommended that for patients’ outcomes to improve, cancer treatment be combinatorial in nature, targeting both cancer cells and stromal cells and interactions.


Sign in / Sign up

Export Citation Format

Share Document