scholarly journals Cold-responsive adipocyte progenitors couple adrenergic signaling to immune cell activation to promote beige adipocyte accrual

2021 ◽  
Author(s):  
Bo Shan ◽  
Mengle Shao ◽  
Qianbin Zhang ◽  
Yu A. An ◽  
Lavanya Vishvanath ◽  
...  

The full array of cold-responsive cell types within white adipose tissue that drive thermogenic beige adipocyte biogenesis remains undefined. We demonstrate that acute cold challenge elicits striking transcriptomic changes specifically within DPP4+ PDGFRβ+ adipocyte precursor cells, including a β-adrenergic receptor CREB-mediated induction in the expression of the prothermogenic cytokine, Il33. Doxycycline-inducible deletion of Il33 in PDGFRβ+ cells at the onset of cold exposure attenuates ILC2 accumulation and beige adipocyte accrual. These studies highlight the multifaceted roles for adipocyte progenitors and the ability of select mesenchymal subpopulations to relay neuronal signals to tissue-resident immune cells in order to regulate tissue plasticity.

2008 ◽  
Vol 16 (6) ◽  
pp. 75-75
Author(s):  
Emily Bradford ◽  
Gary Shull ◽  
Marian Miller

Image of an intraepithelial lymphocyte (IEL) from a CLIC5 mutant mouse small intestine. The CLIC (Chloride Intracellular Channel) family of proteins is expressed in a wide variety of cell types, and several isoforms are known to cycle between soluble and membranebound forms. As well as being widely expressed, the CLICs are involved in diverse functions, including tubulogenesis, immune cell activation, apoptosis and calcium handling. CLIC5 has been shown to associate with cytoskeletal proteins in placental microvilli and inner ear cells, and is required for proper maintenence of hair cell steriocilia. It has also been localized to the cytosol of human intestinal epithelial cells, though its function there remains unclear. The study in which this particular “IEL” was found, involved a search to see what function CLIC5 played in the modulation of tubulovesicles and microvillar apical membranes in the process of acid secretion. In particular, the relative amounts and structural characteristics of these two membrane types was quantified in parietal cells.


2010 ◽  
Vol 1 (2) ◽  
Author(s):  
Mousumi Ghosh ◽  
Damien Pearse

AbstractResearch to date has indicated that cAMPspecific PDEs, particularly the members of PDE4 family, play a crucial role in the pathogenesis of CNS injury and neurodegeneration by downregulating intracellular levels of cAMP in various cell types. Reduced cAMP signaling results in immune cell activation, inflammation, secondary tissue damage, scar formation and axon growth failure, ultimately leading to an exacerbation of injury, the prevention of endogenous repair and limited functional recovery. Although inhibition of cAMPspecific-PDE activity through the use of drugs like Rolipram has been shown to reverse these deficiencies and mediate neurorepair, an inability to develop selective agents and/or reduce dose-limiting side-effects associated with PDE4 inhibition has hampered their clinical translation. Recent work with more selective pharmacological inhibitors of cAMP-specific PDEs and molecular targeting approaches, along with improved understanding of the basic biology and role of PDEs in pathological processes may enable this promising therapeutic approach to advance clinically and have a similar impact on CNS injury and disease as PDE5 inhibitors have had on the treatment of sexual dysfunction.


2015 ◽  
Vol 35 (03) ◽  
pp. 272-278 ◽  
Author(s):  
E. Lutgens ◽  
A. Zirlik

SummaryAtherosclerosis and obesity-induced metabolic dysfunction are lipid-driven inflammatory pathologies responsible for a major part of cardiovascular complications. Immune cell activation as well as interactions between the different immune cells is dependent on and controlled by a variety of co-stimulatory signals. These co-stimulatory signals can either aggravate or ameliorate the disease depending on the stage of the disease, the cell-types involved and the signal transduction cascades initiated. This review focuses on the diverse roles of the most established co-stimulatory molecules of the B7 and Tumor Necrosis Factor Receptor (TNFR) families, ie the CD28/CTLA4-CD80/CD86 and CD40L/CD40 dyads in the pathogenesis of atherosclerosis and obesity. In addition, we will explore their potential as therapeutic targets in both atherosclerosis and obesity.


2013 ◽  
Vol 20 (37) ◽  
pp. 4806-4814 ◽  
Author(s):  
Brigitta Buttari ◽  
Elisabetta Profumo ◽  
Rita Businaro ◽  
Luciano Saso ◽  
Raffaele Capoano ◽  
...  

2021 ◽  
Vol 116 (1) ◽  
Author(s):  
Marius Keller ◽  
Valbona Mirakaj ◽  
Michael Koeppen ◽  
Peter Rosenberger

AbstractCardiovascular pathologies are often induced by inflammation. The associated changes in the inflammatory response influence vascular endothelial biology; they complicate the extent of ischaemia and reperfusion injury, direct the migration of immune competent cells and activate platelets. The initiation and progression of inflammation is regulated by the classical paradigm through the system of cytokines and chemokines. Therapeutic approaches have previously used this knowledge to control the extent of cardiovascular changes with varying degrees of success. Neuronal guidance proteins (NGPs) have emerged in recent years and have been shown to be significantly involved in the control of tissue inflammation and the mechanisms of immune cell activation. Therefore, proteins of this class might be used in the future as targets to control the extent of inflammation in the cardiovascular system. In this review, we describe the role of NGPs during cardiovascular inflammation and highlight potential therapeutic options that could be explored in the future.


Pteridines ◽  
2020 ◽  
Vol 31 (1) ◽  
pp. 68-82
Author(s):  
Gregory Baxter-Parker ◽  
Ravinder Reddy Gaddam ◽  
Elena Moltchanova ◽  
Anitra Carr ◽  
Geoff Shaw ◽  
...  

AbstractIntroduction: Neopterin and 7,8-dihydroneopterin are used as biomarkers of oxidative stress and inflammation, but the effect of kidney function on these measurements has not been extensively explored. We examine the levels of oxidative stress, inflammation and kidney function in intensive patients and compare them to equivalent patients without sepsis.Methods: 34 Intensive care patients were selected for the study, 14 without sepsis and 20 with. Both groups had equivalent levels of trauma, assessed by SAPS II, SOFA, and APACHE II and III scores. Plasma and urinary neopterin and total neopterin (neopterin + 7,8-dihydroneopterin) values were measured.Results: Neopterin and total neopterin were significantly elevated in urine and plasma for multiple days in sepsis versus non-sepsis patients. Plasma neopterin and total neopterin have decreasing relationships with increased eGFR (p<0.008 and p<0.001, respectively). Plasma/urinary neopterin and total neopterin ratios demonstrate that total neopterin flux is more influenced by eGFR than neopterin, with significantce of p<0.02 and p<0.0002 respectively.Conclusion: Sepsis patients present with greater levels of oxidative stress and immune system activation than non-sepsis patients of equal levels of trauma, as measured by neopterin and total neopterin. eGFR may need to be taken into account when accessing the level of inflammation from urinary neopterin measurements.


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1681
Author(s):  
Lucia Sophie Kilian ◽  
Derk Frank ◽  
Ashraf Yusuf Rangrez

Chronic inflammation, the activation of immune cells and their cross-talk with cardiomyocytes in the pathogenesis and progression of heart diseases has long been overlooked. However, with the latest research developments, it is increasingly accepted that a vicious cycle exists where cardiomyocytes release cardiocrine signaling molecules that spiral down to immune cell activation and chronic state of low-level inflammation. For example, cardiocrine molecules released from injured or stressed cardiomyocytes can stimulate macrophages, dendritic cells, neutrophils and even T-cells, which then subsequently increase cardiac inflammation by co-stimulation and positive feedback loops. One of the key proteins involved in stress-mediated cardiomyocyte signal transduction is a small GTPase RhoA. Importantly, the regulation of RhoA activation is critical for effective immune cell response and is being considered as one of the potential therapeutic targets in many immune-cell-mediated inflammatory diseases. In this review we provide an update on the role of RhoA at the juncture of immune cell activation, inflammation and cardiac disease.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1413
Author(s):  
Sofia Ojasalo ◽  
Petteri Piskunen ◽  
Boxuan Shen ◽  
Mauri A. Kostiainen ◽  
Veikko Linko

Viruses are among the most intriguing nanostructures found in nature. Their atomically precise shapes and unique biological properties, especially in protecting and transferring genetic information, have enabled a plethora of biomedical applications. On the other hand, structural DNA nanotechnology has recently emerged as a highly useful tool to create programmable nanoscale structures. They can be extended to user defined devices to exhibit a wide range of static, as well as dynamic functions. In this review, we feature the recent development of virus-DNA hybrid materials. Such structures exhibit the best features of both worlds by combining the biological properties of viruses with the highly controlled assembly properties of DNA. We present how the DNA shapes can act as “structured” genomic material and direct the formation of virus capsid proteins or be encapsulated inside symmetrical capsids. Tobacco mosaic virus-DNA hybrids are discussed as the examples of dynamic systems and directed formation of conjugates. Finally, we highlight virus-mimicking approaches based on lipid- and protein-coated DNA structures that may elicit enhanced stability, immunocompatibility and delivery properties. This development also paves the way for DNA-based vaccines as the programmable nano-objects can be used for controlling immune cell activation.


Author(s):  
Lorena P. Suarez-Kelly ◽  
Steven H. Sun ◽  
Casey Ren ◽  
Isaac V. Rampersaud ◽  
David Albertson ◽  
...  

Author(s):  
Victor Delprat ◽  
Carine Michiels

AbstractCancer progression largely depends on tumor blood vessels as well on immune cell infiltration. In various tumors, vascular cells, namely endothelial cells (ECs) and pericytes, strongly regulate leukocyte infiltration into tumors and immune cell activation, hence the immune response to cancers. Recently, a lot of compelling studies unraveled the molecular mechanisms by which tumor vascular cells regulate monocyte and tumor-associated macrophage (TAM) recruitment and phenotype, and consequently tumor progression. Reciprocally, TAMs and monocytes strongly modulate tumor blood vessel and tumor lymphatic vessel formation by exerting pro-angiogenic and lymphangiogenic effects, respectively. Finally, the interaction between monocytes/TAMs and vascular cells is also impacting several steps of the spread of cancer cells throughout the body, a process called metastasis. In this review, the impact of the bi-directional dialog between blood vascular cells and monocytes/TAMs in the regulation of tumor progression is discussed. All together, these data led to the design of combinations of anti-angiogenic and immunotherapy targeting TAMs/monocyte whose effects are briefly discussed in the last part of this review.


Sign in / Sign up

Export Citation Format

Share Document