scholarly journals Transmission x-ray microscopy at low temperatures: Irregular supercurrent flow at small length scales

2018 ◽  
Vol 97 (13) ◽  
Author(s):  
J. Simmendinger ◽  
S. Ruoss ◽  
C. Stahl ◽  
M. Weigand ◽  
J. Gräfe ◽  
...  
2011 ◽  
Vol 690 ◽  
pp. 1-4 ◽  
Author(s):  
S. T. Thoroddsen

AbstractThe splash resulting from the impact of a drop onto a pool is a particularly beautiful manifestation of a canonical problem, where a mass of fluid breaks up into smaller pieces. Despite over a century of experimental study, the splashing mechanics have eluded full description, the details often being obscured by the very rapid motions and small length scales involved. Zhang et al. (J. Fluid Mech., vol. 690, 2012, pp. 5–15) introduce a powerful new tool to the experimental arsenal, when they apply X-ray imaging to study the fine ejecta sheets which emerge during the earliest contact of the drop. Their images reveal hidden details and complex underlying dynamics, which will directly affect the size and velocity of the splashing droplets.


2014 ◽  
Vol 2 ◽  
pp. 73-94 ◽  
Author(s):  
Markus Stana ◽  
Manuel Ross ◽  
Bogdan Sepiol

The new technique of atomic-scale X-ray Photon Correlation Spectroscopy (aXPCS) makesuse of a coherent X-ray beam to study the dynamics of various processes in condensed matter systems.Particularly atomistic migration mechanisms are still far from being understood in most of intermetallicalloys and in amorphous systems. Special emphasis must be given to the opportunity to measureatomistic diffusion at relatively low temperatures where such measurements were far out of reach withpreviously established methods. The importance of short-range order is demonstrated on the basis ofMonte Carlo simulations.


2010 ◽  
Vol 74 ◽  
pp. 38-47
Author(s):  
Clay Mortensen ◽  
Paul Zschack ◽  
David C. Johnson

The evolution of designed [(Ti-Te)]x[(Sb-Te)]y, [(Bi-Te)]x[(Sb-Te)]y, [(Ti-Te)]w[(Bi-Te)]x[(Sb-Te)]y and [(Ti-Te)]w[(Bi-Te)]x[(Ti-Te)]y[(Sb-Te)]z precursors were followed as a function of annealing temperature and time using both low and high angle x-ray diffraction techniques to probe the self assembly into nanolaminate materials. The [(Bi-Te)]x[(Sb-Te)]y precursors were found to interdiffuse at low temperatures to form a (BixSb1-x)2Te3 alloy. The [(Ti-Te)]x[(Bi-Te)]y and [(Ti-Te)]x[(Sb-Te)]y precursors formed ordered nanolaminates [{(TiTe2)}1.35]x[Bi2Te3]y and [{(TiTe2)}1.35]x[Sb2Te3]y respectively. The [(Ti-Te)]w[(Bi-Te)]x[(Sb-Te)]x precursors formed [{(TiTe2)}1.35]w[(Bi0.5Sb0.5)2Te3]2x nanolaminates on annealing, as the bismuth and antimony layers interdiffused. Over the range of TiTe2 thicknesses used in [(Ti-Te)]w[(Bi-Te)]x[(Ti-Te)]y[(Sb-Te)]z precursors, Bi and Sb were found to interdiffuse through the 2-4 nm thick Ti-Te layers, resulting in the formation of (BixSb1-x)2Te3 alloy layers as part of the final nanolaminated products. When the Bi-Te and Sb-Te thicknesses were equal in the amorphous precursors, symmetric [{(TiTe2)}1.35]m[(Bi0.5Sb0.5)2Te3]n nanolamiantes were formed. When the thicknesses of Bi-Te and Sb-Te layers were not equal in the amorphous precursor, asymmetric [(TiTe2)1.35]m[(BixSb1-x)2Te3]n[(TiTe2)1.35]m[(BixSb1-x)2Te3]p nanolaminates were formed. These results imply that to form (A)w(B)x(C)y nanolaminates using designed layered precursors all three components must be immiscible. To form (A)x(B)y(A)x(C)z nanolaminates, the components must be immiscible or the precursor to the A component and the A component itself must be an effective interdiffusion barrier preventing B and C from mixing.


2004 ◽  
Vol 19 (4) ◽  
pp. 347-351
Author(s):  
J. Xu ◽  
X. S. Wu ◽  
B. Qian ◽  
J. F. Feng ◽  
S. S. Jiang ◽  
...  

Ge–Si inverted huts, which formed at the Si∕Ge interface of Si∕Ge superlattice grown at low temperatures, have been measured by X-ray diffraction, grazing incidence X-ray specular and off-specular reflectivities, and transmission electron microscopy (TEM). The surface of the Si∕Ge superlattice is smooth, and there are no Ge–Si huts appearing on the surface. The roughness of the surfaces is less than 3 Å. Large lattice strain induced by lattice mismatch between Si and Ge is found to be relaxed because of the intermixing of Ge and Si at the Si∕Ge interface.


2006 ◽  
Vol 20 (25n27) ◽  
pp. 3999-4004
Author(s):  
HIROSHI MATSUI ◽  
KAZUFUMI WATANABE

Antimony-platinum bilayers were prepared on titanium substrates by the two-step electrodeposition in the usual baths, and then surface alloys were formed by the atom diffusion in the solid phase. The simple antimony layer was little influenced by the substrate in both the measurements of X-ray diffraction and the i - E characteristic in a sulfuric acid solution. Regarding the bilayers, the catalytic activity in hydrogen evolution reaction was very sensitive to the presence of platinum, while the hydrogen adsorbability was quite insensitive. An interaction between antimony and platinum was confirmed by the appearance of a new dissolution wave in the electrochemical measurement and the occurrence of a new diffraction in the X-ray diffraction pattern after the heat-treatment of about 400°C. Although the new diffraction disagreed with any of the reported alloys, clear diffraction pattern of PtSb 2 alloy was observed, when the bilayers were heat-treated at about 600°C for one hour. Considering the penetration depth of X-ray, the alloying of antimony and platinum seems to occur also at low temperatures at least at the top surface.


1995 ◽  
Vol 403 ◽  
Author(s):  
D. V. Dimitrov ◽  
A. S. Murthy ◽  
G. C. Hadjipanayis ◽  
C. P. SWANN

AbstractFe-O and Co-O films were prepared by DC magnetron sputtering in a mixture of Ar and O2 gases. By varying the oxygen to argon ratio, oxide films with stoichiometry FeO, Fe3O4, α-Fe2O3, CoO and Co3O4 were produced. TEM studies showed that the Fe – oxide films were polycrystalline consisting of small almost spherical grains, about 10 nm in size. Co-O films had different microstructure with grain size and shape dependent on the amount of oxygen. X-ray diffraction studies showed that the grains in Fe-O films were randomly oriented in contrast to Co-O films in which a <111> texture was observed. Pure FeO and α-Fe2O3 films were found to be superparamagnetic at room temperature but strongly ferromagnetic at low temperatures in contrast to the antiferromagnetic nature of bulk samples. A very large shift in the hysteresis loop, about 3800 Oe, was observed in field cooled Co-CoO films indicating the presence of a large unidirectional exchange anisotropy.


Nanoscale ◽  
2021 ◽  
Author(s):  
Jerome Carnis ◽  
Felizitas Kirner ◽  
Dmitry Lapkin ◽  
Sebastian Sturm ◽  
Young Yong Kim ◽  
...  

Mesocrystals are nanostructured materials consisting of individual nanocrystals having a preferred crystallographic orientation. On mesoscopic length scales, the properties of mesocrystals are strongly affected by structural heterogeneity. Here, we report...


2020 ◽  
Vol 61 (6) ◽  
Author(s):  
C E Schrank ◽  
K Gioseffi ◽  
T Blach ◽  
O Gaede ◽  
A Hawley ◽  
...  

Abstract We present a review of a unique non-destructive method for the real-time monitoring of phase transformations and nano-pore evolution in dehydrating rocks: transmission small- and wide-angle synchrotron X-ray scattering (SAXS/WAXS). It is shown how SAXS/WAXS can be applied to investigating rock samples dehydrated in a purpose-built loading cell that allows the coeval application of high temperature, axial confinement, and fluid pressure or flow to the specimen. Because synchrotron sources deliver extremely bright monochromatic X-rays across a wide energy spectrum, they enable the in situ examination of confined rock samples with thicknesses of ≤ 1 mm at a time resolution of order seconds. Hence, fast kinetics with reaction completion times of about hundreds of seconds can be tracked. With beam sizes of order tens to hundreds of micrometres, it is possible to monitor multiple interrogation points in a sample with a lateral extent of a few centimetres, thus resolving potential lateral spatial effects during dehydration and enlarging sample statistics significantly. Therefore, the SAXS/WAXS method offers the opportunity to acquire data on a striking range of length scales: for rock samples with thicknesses of ≤ 10-3 m and widths of 10-2 m, a lateral interrogation-point spacing of ≥ 10-5 m can be achieved. Within each irradiated interrogation-point volume, information concerning pores with sizes between 10-9 and 10-7 m and the crystal lattice on the scale of 10-10 m is acquired in real time. This article presents a summary of the physical principles underpinning transmission X-ray scattering with the aim of providing a guide for the design and interpretation of time-resolved SAXS/WAXS experiments. It is elucidated (1) when and how SAXS data can be used to analyse total porosity, internal surface area, and pore-size distributions in rocks on length scales from ∼1 to 300 nm; (2) how WAXS can be employed to track lattice transformations in situ; and (3) which limitations and complicating factors should be considered during experimental design, data analysis, and interpretation. To illustrate the key capabilities of the SAXS/WAXS method, we present a series of dehydration experiments on a well-studied natural gypsum rock: Volterra alabaster. Our results demonstrate that SAXS/WAXS is excellently suited for the in situ tracking of dehydration kinetics and the associated evolution of nano-pores. The phase transformation from gypsum to bassanite is correlated directly with nano-void growth on length scales between 1 and 11 nm for the first time. A comparison of the SAXS/WAXS kinetic results with literature data emphasises the need for future dehydration experiments on rock specimens because of the impact of rock fabric and the generally heterogeneous and transient nature of dehydration reactions in nature. It is anticipated that the SAXS/WAXS method combined with in situ loading cells will constitute an invaluable tool in the ongoing quest for understanding dehydration and other mineral replacement reactions in rocks quantitatively.


1992 ◽  
Vol 242 ◽  
Author(s):  
T. D. Moustakas ◽  
R. J. Molnar ◽  
T. Lei ◽  
G. Menon ◽  
C. R. Eddy

ABSTRACTGaN films were grown on c-plane (0001), a-plane (1120) and r-plane (1102) sapphire substrates by the ECR-assisted MBE method. The films were grown using a two-step growth process, in which a GaN buffer is grown first at relatively low temperatures and the rest of the film is grown at higher temperatures. RHEED studies indicate that this growth method promotes lateral growth and leads to films with smooth surface morphology. The epitaxial relationship to the substrate, the crystalline quality and the surface morphology were investigated by RHEED, X-ray diffraction and SEM studies.


Sign in / Sign up

Export Citation Format

Share Document