A re-investigation of the crystal structure of choline chloride

1971 ◽  
Vol 27 (7) ◽  
pp. 1320-1323 ◽  
Author(s):  
J. Hjortås ◽  
H. Sørum
2019 ◽  
Vol 70 (8) ◽  
pp. 2968-2972
Author(s):  
Elena Ionela Neacsu ◽  
Virgil Constantin ◽  
Cristina Donath ◽  
Kazimir Yanushkevich ◽  
Aliona Zhivulka ◽  
...  

The corrosion behaviour of special alloys (Uranus B6 steel and Monel 400) exposed to chlorine chloride-deep eutectic solvents (DES) at 353 K has been investigated by polarization curves method. The corresponding corrosion parameters in choline chloride-oxalic acid and choline chloride-malonic acid were calculated. Micrographic images before and after immersion in the corrosive medium were obtained. Measurements of the influence of the corrosion process on the crystal structure and specific magnetization of the studied steels was carried out by using X-ray diffraction and respectivelly ponderomotive methods.


2017 ◽  
Vol 53 (39) ◽  
pp. 5449-5452 ◽  
Author(s):  
Yogesh P. Patil ◽  
Rajkumar Kore ◽  
Steven P. Kelley ◽  
Scott T. Griffin ◽  
Robin D. Rogers

The ions of the ZnCl2/choline chloride deep eutectic system form a neutral complex by coordination to a central metal ion.


Author(s):  
Douglas L. Dorset ◽  
Anthony J. Hancock

Lipids containing long polymethylene chains were among the first compounds subjected to electron diffraction structure analysis. It was only recently realized, however, that various distortions of thin lipid microcrystal plates, e.g. bends, polar group and methyl end plane disorders, etc. (1-3), restrict coherent scattering to the methylene subcell alone, particularly if undistorted molecular layers have well-defined end planes. Thus, ab initio crystal structure determination on a given single uncharacterized natural lipid using electron diffraction data can only hope to identify the subcell packing and the chain axis orientation with respect to the crystal surface. In lipids based on glycerol, for example, conformations of long chains and polar groups about the C-C bonds of this moiety still would remain unknown.One possible means of surmounting this difficulty is to investigate structural analogs of the material of interest in conjunction with the natural compound itself. Suitable analogs to the glycerol lipids are compounds based on the three configurational isomers of cyclopentane-1,2,3-triol shown in Fig. 1, in which three rotameric forms of the natural glycerol derivatives are fixed by the ring structure (4-7).


Author(s):  
George G. Cocks ◽  
Louis Leibovitz ◽  
DoSuk D. Lee

Our understanding of the structure and the formation of inorganic minerals in the bivalve shells has been considerably advanced by the use of electron microscope. However, very little is known about the ultrastructure of valves in the larval stage of the oysters. The present study examines the developmental changes which occur between the time of conception to the early stages of Dissoconch in the Crassostrea virginica(Gmelin), focusing on the initial deposition of inorganic crystals by the oysters.The spawning was induced by elevating the temperature of the seawater where the adult oysters were conditioned. The eggs and sperm were collected separately, then immediately mixed for the fertilizations to occur. Fertilized animals were kept in the incubator where various stages of development were stopped and observed. The detailed analysis of the early stages of growth showed that CaCO3 crystals(aragonite), with orthorhombic crystal structure, are deposited as early as gastrula stage(Figuresla-b). The next stage in development, the prodissoconch, revealed that the crystal orientation is in the form of spherulites.


Author(s):  
Kazushige Hirosawa ◽  
Eichi Yamada

The pigment epithelium is located between the choriocapillary and the visual cells. The pigment epithelial cell is characterized by a large amount of the smooth endoplasmic reticulum (SER) in its cytoplasm. In addition, the pigment epithelial cell of some lower vertebrate has myeloid body as a specialized form of the SER. Generally, SER is supposed to work in the lipid metabolism. However, the functions of abundant SER and myeloid body in the pigment epithelial cell are still in question. This paper reports an attempt, to depict the functions of these organelles in the frog retina by administering one of phospholipid precursors.


Author(s):  
F.-R. Chen ◽  
T. L. Lee ◽  
L. J. Chen

YSi2-x thin films were grown by depositing the yttrium metal thin films on (111)Si substrate followed by a rapid thermal annealing (RTA) at 450 to 1100°C. The x value of the YSi2-x films ranges from 0 to 0.3. The (0001) plane of the YSi2-x films have an ideal zero lattice mismatch relative to (111)Si surface lattice. The YSi2 has the hexagonal AlB2 crystal structure. The orientation relationship with Si was determined from the diffraction pattern shown in figure 1(a) to be and . The diffraction pattern in figure 1(a) was taken from a specimen annealed at 500°C for 15 second. As the annealing temperature was increased to 600°C, superlattice diffraction spots appear at position as seen in figure 1(b) which may be due to vacancy ordering in the YSi2-x films. The ordered vacancies in YSi2-x form a mesh in Si plane suggested by a LEED experiment.


Author(s):  
A. F. Marshall ◽  
J. W. Steeds ◽  
D. Bouchet ◽  
S. L. Shinde ◽  
R. G. Walmsley

Convergent beam electron diffraction is a powerful technique for determining the crystal structure of a material in TEM. In this paper we have applied it to the study of the intermetallic phases in the Cu-rich end of the Cu-Zr system. These phases are highly ordered. Their composition and structure has been previously studied by microprobe and x-ray diffraction with sometimes conflicting results.The crystalline phases were obtained by annealing amorphous sputter-deposited Cu-Zr. Specimens were thinned for TEM by ion milling and observed in a Philips EM 400. Due to the large unit cells involved, a small convergence angle of diffraction was used; however, the three-dimensional lattice and symmetry information of convergent beam microdiffraction patterns is still present. The results are as follows:1) 21 at% Zr in Cu: annealed at 500°C for 5 hours. An intermetallic phase, Cu3.6Zr (21.7% Zr), space group P6/m has been proposed near this composition (2). The major phase of our annealed material was hexagonal with a point group determined as 6/m.


Author(s):  
H.-J. Ou ◽  
J. M. Cowley

Using the dedicate VG-HB5 STEM microscope, the crystal structure of high Tc superconductor of YBa2Cu3O7-x has been studied via high resolution STEM (HRSTEM) imaging and nanobeam (∽3A) diffraction patterns. Figure 1(a) and 2(a) illustrate the HRSTEM image taken at 10' times magnification along [001] direction and [100] direction, respectively. In figure 1(a), a grain boundary with strong field contrast is seen between two crystal regions A and B. The grain boundary appears to be parallel to a (110) plane, although it is not possible to determine [100] and [001] axes as it is in other regions which contain twin planes [3]. Following the horizontal lattice lines, from left to right across the grain boundary, a lattice bending of ∽4° is noticed. Three extra lattice planes, indicated by arrows, were found to terminate at the grain boundary and form dislocations. It is believed that due to different chemical composition, such structure defects occur during crystal growth. No bending is observed along the vertical lattice lines.


Sign in / Sign up

Export Citation Format

Share Document