Polymorphic forms of bendamustine hydrochloride: crystal structure, thermal properties and stability at ambient conditions

Author(s):  
Pablo Gaztañaga ◽  
Ricardo Baggio ◽  
Daniel Roberto Vega

Crystallographic, thermal and stability analyses are presented of three different anhydrated forms of bendamustine hydrochloride [(I), (III) and (IV)] and a fourth, monohydrated one (II). Since form (I) presents the higher melting point and the higher heat of fusion, according to the `heat of fusion' rule it should be the most stable in thermodynamic terms [Burger & Ramberger (1979). Mikrochim. Acta, 72, 259–271], though it is unstable in high-humidity conditions. The monohydrate structure (II), in turn, dehydrates by heating and topotactically transform into anhydrate (III). This latter form appears as less stable than anhydrate (I), to which it is linked via a monotropic relationship. For these three different forms, the crystal structure has been determined by single crystal X-ray diffraction. The crystal structures and molecular conformations of forms (II) and (III) are quite similar, as expected from the topotactic transformation linking them; furthermore, under high-humidity conditions, form (III) shows changes compatible with a transformation into form (II) within 24 h. The crystal structure of form (I) is different from the other two. The remaining polymorphic form (IV) could only be obtained as a powder, from which its crystalline structure could not be determined. The relative thermodynamic stability of the different crystalline forms was determined by differential scanning calorimetry and thermogravimetrical studies, and their stability under different humidity conditions analysed.

Author(s):  
Min-Jeong Lee ◽  
Srinivasulu Aitipamula ◽  
Guang J. Choi ◽  
Pui Shan Chow

Polymorphism of active pharmaceutical ingredients (APIs) is of significance in the pharmaceutical industry because it can affect the quality, efficacy and safety of the final drug product. In this regard, polymorphic behavior of cocrystals is no exception because it can influence the development of cocrystals as potential drug formulations. The current contribution aims to introduce two novel polymorphs [forms (III) and (IV)] of agomelatine–hydroquinone (AGO-HYQ) cocrystal and to describe the thermodynamic relationship between the cocrystal polymorphs. All polymorphs were characterized using powder X-ray diffraction, differential scanning calorimetry, hot-stage microscopy and solubility measurements. In addition, the crystal structure of form (II), which has been previously solved from powder diffraction data [Prohens et al. (2016), Cryst. Growth Des. 16, 1063–1070] and form (III) were determined from the single-crystal X-ray diffraction data. Thermal analysis revealed that AGO-HYQ cocrystal form (III) exhibits a higher melting point and a lower heat of fusion than those of form (II). According to the heat of fusion rule, the polymorphs are enantiotropically related, with form (III) being stable at higher temperatures. Our results also show that the novel form (IV) is the most stable form at ambient conditions and it transforms into form (II) on heating, and therefore, the two polymorphs are enantiotropically related. Furthermore, solubility and van't Hoff plot results suggest that the transition points are approximately 339 K for the pair form (IV)–(II) and 352 K for the pair form (II)–(III).


Crystals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1126
Author(s):  
Ivan V. Fedyanin ◽  
Aida I. Samigullina ◽  
Ivan A. Krutov ◽  
Elena L. Gavrilova ◽  
Dmitry V. Zakharychev

Two polymorphic forms of a conformationally flexible molecule, 5-[(Diphenylphosphoryl)methyl]-4-(prop-2-en-1-yl)-2,4-dihydro-3H-1,2,4-triazole-3-thione, were obtained by crystallization and characterized by X-ray diffraction analysis and differential scanning calorimetry. The relative stability of polymorphic forms was estimated with DFT calculations of crystal structures and isolated molecules. It turns out, that in the first more dense polymorph with higher cohesion energy and crystal lattice energy, the molecule adopts an energetically unfavorable conformation, and forms dimers with lower H-bond strength, as compared to the second polymorph. On the other hand, in the second polymorph, the molecule adopts almost the lowest-energy conformation and forms infinite chains via strong H-bonds. The first form that seems to be more thermodynamically stable at room temperature transforms into the second form via two endothermic phase transitions; the apparent irreversibility of the transition is due to high energy difference between the molecular conformations in crystals.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Ryosuke Sinmyo ◽  
Elena Bykova ◽  
Sergey V. Ovsyannikov ◽  
Catherine McCammon ◽  
Ilya Kupenko ◽  
...  

Abstract Iron oxides are fundamentally important compounds for basic and applied sciences as well as in numerous industrial applications. In this work we report the synthesis and investigation of a new binary iron oxide with the hitherto unknown stoichiometry of Fe7O9. This new oxide was synthesized at high-pressure high-temperature (HP-HT) conditions, and its black single crystals were successfully recovered at ambient conditions. By means of single crystal X-ray diffraction we determined that Fe7O9 adopts a monoclinic C2/m lattice with the most distorted crystal structure among the binary iron oxides known to date. The synthesis of Fe7O9 opens a new portal to exotic iron-rich (M,Fe)7O9 oxides with unusual stoichiometry and distorted crystal structures. Moreover, the crystal structure and phase relations of such new iron oxide groups may provide new insight into the cycling of volatiles in the Earth’s interior.


2021 ◽  
pp. 2150407
Author(s):  
S. I. Ibrahimova

The crystal structure and thermal properties of the [Formula: see text] compound have been investigated. Structural studies were performed by X-ray diffraction at room temperature. The crystal structure of this compound was found to correspond to the hexagonal symmetry of the space group P61. Thermal properties were studied using a differential scanning calorimetry (DSC). It was found in the temperature range [Formula: see text] that thermal effects occur at temperatures [Formula: see text] and [Formula: see text]. The thermodynamic parameters of these effects are calculated.


2016 ◽  
Vol 71 (5) ◽  
pp. 611-619 ◽  
Author(s):  
Yurii Prots ◽  
Felix Lange ◽  
Christina Drathen ◽  
Marcus Schmidt ◽  
Yuri Grin

AbstractCombining laboratory X-ray powder diffraction with in-situ high-temperature synchrotron experiments and differential scanning calorimetry, it has been shown that Ba21Al40, Ba3Al5, Ba7Al10 and Ba4Al5 decompose peritectically at 914, 826, 756, and 732°C, respectively. In addition, a new binary compound with the composition Ba4Al7+x (x = 0.17) and the formation temperature of 841°C was found. The initial structural model (space group P63/mmc, a = 6.0807(1), c = 39.2828(8) Å) with four Ba and five Al crystallographic positions was developed. It is based on the intergrowth concept involving the neighboring Ba21Al40 and Ba3Al5 phases and the derived atomic arrangement is subsequently refined using X-ray diffraction data. The crystal structures of all phases in the Ba–Al system, except BaAl4, exhibit Kagomé nets of aluminum atoms resembling those observed for the B atoms in the Laves phases AB2. In the crystal structure of Ba4Al7+x, single Kagomé layers alternate with double slabs (MgZn2 motif) along [001] and are separated by Ba cations. Intergrowth features of Ba4Al7+x are discussed together with the neighboring Ba–Al compounds and Sr5Al9.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Di Li ◽  
Guo-Qing Zhong

The antimony(III) complex [Sb(Hedta)]·2H2O was synthesized with ethylenediaminetetraacetic acid (H4edta) and antimonous oxide as main raw materials in aqueous solution. The composition and structure of the complex were characterized by elemental analysis, infrared spectra, single crystal X-ray diffraction, X-ray powder diffraction, thermogravimetry, and differential scanning calorimetry. The crystal structure of the antimony(III) complex belongs to orthorhombic system, space group Pna2(1), with cell parameters ofa=18.4823(18) Å,b=10.9408(12) Å,c=7.3671(5) Å,V=1489.7(2) Å3,Z=4, andDc=1.993 g cm−3. The Sb(III) ion is five-coordinated by two amido N atoms and three carboxyl O atoms from a single Hedta3−ligand, forming a distorted trigonal bipyramid geometry. The thermal decomposition processes of the complex include dehydration, oxidation, and pyrolysis of the ligand, and the last residue is Sb2O3at the temperature of 570°C.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 289
Author(s):  
Debora Zanolla ◽  
Dritan Hasa ◽  
Mihails Arhangelskis ◽  
Gabriela Schneider-Rauber ◽  
Michele R. Chierotti ◽  
...  

Praziquantel (PZQ) is the first-line drug used against schistosomiasis, one of the most common parasitic diseases in the world. A series of crystalline structures including two new polymorphs of the pure drug and a series of cocrystals of PZQ have been discovered and deposited in the Cambridge Structural Database (CSD). This work adds to the list of multicomponent forms of PZQ a relevant example of a racemic hemihydrate (PZQ-HH), obtainable from commercial PZQ (polymorphic Form A) through mechanochemistry. Noteworthy, the formation of the new hemihydrate strongly depends on the initial polymorphic form of PZQ and on the experimental conditions used. The new PZQ-HH has been fully characterized by means of HPLC, Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), Hot-Stage Microscopy (SEM), Powder X-Ray Diffraction (PXRD), Scanning Electron Microscopy (SEM), FT-IR, polarimetry, solid-state NMR (SS-NMR), solubility and intrinsic dissolution rate (IDR), and in vitro tests on Schistosoma mansoni adults. The crystal structure was solved from the powder X-ray diffraction pattern and validated by periodic-DFT calculations. The new bioactive hemihydrate was physically stable for three months and showed peculiar biopharmaceutical features including enhanced solubility and a double intrinsic dissolution rate in water in comparison to the commercially available PZQ Form A.


Crystals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1016
Author(s):  
Xiao-Cun Liu ◽  
Ming-Yan Pan

AgBiSe2, which exhibits complex structural phase transition behavior, has recently been considered as a potential thermoelectric material due to its intrinsically low thermal conductivity. In this work, we investigate the crystal structure of Sn-doped AgBiSe2 through powder X-ray diffraction and differential scanning calorimetry measurements. A stable cubic Ag1−x/2Bi1−x/2SnxSe2 phase can be obtained at room temperature when the value of x is larger than 0.2. In addition, the thermoelectric properties of Ag1−x/2Bi1−x/2SnxSe2 (x = 0.2, 0.25, 0.3, 0.35) are investigated, revealing that Ag1−x/2Bi1−x/2SnxSe2 compounds are intrinsic semiconductors with a low lattice thermal conductivity. This work provides new insights into the crystal structure adjustment of AgBiSe2 and shows that Ag1−x/2Bi1−x/2SnxSe2 is a potentially lead-free thermoelectric material candidate.


Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 197
Author(s):  
Izabela Jendrzejewska ◽  
Robert Musioł ◽  
Tomasz Goryczka ◽  
Ewa Pietrasik ◽  
Joanna Klimontko ◽  
...  

X-ray powder diffraction (XRPD) and thermal analysis (differential scanning calorimetry/derivative of thermogravimetry (DSC/DTG)) are solid-state techniques that can be successfully used to identify and quantify various chemical compounds in polycrystalline mixtures, such as dietary supplements or drugs. In this work, 31 dietary supplements available on the Polish market that contain iron compounds, namely iron gluconate, fumarate, bisglycinate, citrate and pyrophosphate, were evaluated. The aim of the work was to identify iron compounds declared by the manufacturer as food supplements and to try to verify compliance with the manufacturer’s claims. Studies performed by X-ray and thermal analysis confirmed that crystalline iron compounds (iron (II) gluconate, iron (II) fumarate), declared by the manufacturers, were present in the investigated dietary supplements. Iron (II) bisglycinate proved to be semi-crystalline. However, depending on the composition of the formulation, it was possible to identify this compound in the tested supplements. For amorphous iron compounds (iron (III) citrate and iron (III) pyrophosphate), the diffraction pattern does not have characteristic diffraction lines. Food supplements containing crystalline iron compounds have a melting point close to the melting point of pure iron compounds. The presence of excipients was found to affect the shapes and positions of the endothermic peaks significantly. Widening of endothermic peaks and changes in their position were observed, as well as exothermic peaks indicating crystallization of amorphous compounds. Weight loss was determined for all dietary supplements tested. Analysis of the DTG curves showed that the thermal decomposition of most food supplements takes place in several steps. The results obtained by a combination of both simple, relatively fast and reliable XRPD and DSC/DTG methods are helpful in determining phase composition, pharmaceutical abnormalities or by detecting the presence of the correct polymorphic form.


Minerals ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 71
Author(s):  
Florian Tian-Siang Hua ◽  
Przemyslaw Dera ◽  
Jennifer Kung

A suite of hydrous orthoenstatite crystals were synthesized at 5–7 GPa and 1100–1300 °C, corresponding to the mid upper mantle conditions in continental regions. The synthetic crystals presented a clear, inclusion-free, and euhedral form with a size range from 100 to a few hundred microns. The Al- and water content of crystals were less than 2 wt. % and ranging from ~500 ppm to 1000 ppm, respectively, characterized by Raman and IR spectroscopy, electron microscopy, and SIMS. The analysis shows that the capability of water incorporation for this suite of hydrous orthoenstatite is correlated to the Al-content in the crystal structure. To understand how the detailed crystal structure reflects the influence of water and Al, single crystal X ray diffraction analysis was performed for this suite of hydrous orthoenstatite. By comparing the results obtained at ambient conditions, we find that for low-level of Al-content, <2 wt. %, the Al3+ cation tends to occupy one of tetrahedral sites (TB) only. Analysis of the X ray diffraction results under high pressure indicates that the elasticity of orthoenstatites is insensitive to the presence of low-level water and Al. We use this finding to evaluate the velocity profile at the mid upper mantle of continental regions to compare with seismic observation. The comparison indicates that the cause of the low velocity zone in continental regions originates from the geotherm profile rather than the effect of water on the elasticity of mantle phases.


Sign in / Sign up

Export Citation Format

Share Document