Improvement of aircraft crashworthy performance using inversion failure strut system

2017 ◽  
Vol 89 (2) ◽  
pp. 330-337 ◽  
Author(s):  
Yiru Ren ◽  
Jinwu Xiang

Purpose The purpose of this paper is to improve the crashworthiness of aircraft by using the strut system as an energy absorption device without redesigning other components. Design/methodology/approach The novel strut system consists of metal stepped thin-walled tubes and articulated connecting hinges. The strut is suffering axial load during impact process for rotating of hinges, and the metal stepped tube has an inversion failure behaviour. Findings The metal stepped tube has lower initial impact load and more stable failure behaviour. The geometrical factors have a great influence on the impact load and energy absorption efficiency. The best length ratio between upper and lower sections is about 2:1 and 1:1 for the metal stepped circular and square tubes, respectively. Practical implications The metal stepped tube with inversion mechanism is suitable for aircraft strut system to improve crashworthiness performance. Originality/value A new strut system is provided using metal inversion failure stepped tubes and articulated connecting hinges to improve crash worthiness of aircraft.

Author(s):  
Vinícius Veloso ◽  
Pedro Américo Almeida Magalhães ◽  
Janes Landre

Tubular energy absorbers are usually found in the structures of cars, trains, and other means of transportation. They can absorb high levels of impact energy by plastic deformation during axial folding. The key advantages of this type of energy absorber are the compact dimensions, simple manufacturing, and good energy absorption efficiency. The dynamic behavior of the tube during collapse has a great influence on the total energy absorbed and, consequently, the force transmitted during folding. The optimization of this process may lead to improved energy absorption efficiency, allowing us to reduce the dimensions and costs of the component or improve the crashworthiness of pre-existing structures. Foam materials are used in most applications to improve the impact absorption of structures due to its constant load pattern during crushing. They are used, in most cases, as fillers inside empty absorbers such as tubes. In this paper, a numerical model was developed in order to study the possible interactions of foam and tube walls, providing information onhow this relation can influence the deformation modes of the tube. The obtained results showed a direct influence of the foam interaction with the tube walls under the energy absorption and load transmitting characteristics of the component.


Author(s):  
Wenke Lu ◽  
Junyan Zhang

Abstract This study investigates the mechanical response of aluminum foam sandwich panels, sandwich cylindrical shells, and sandwich shallow shells under impact loads. First, a finite element model of the sandwich panel was established, and an impact load was applied. The numerical results were compared with theoretical and experimental results to verify the model's effectiveness. Second, the energy absorption efficiency and overall deformation of sandwich panels, sandwich cylindrical shells, and sandwich shallow shells under the same impact load were studied. The research shows that the energy absorption performance of the sandwich shells is better than that of the sandwich panels, and the overall deformation is less than that of the sandwich panels. The effect of increasing panel thickness on the two types of sandwich shell studies is based on this basis. The conclusions describe that increasing the panel thickness will significantly reduce the structure's energy absorption efficiency and deformation. Finally, the effect of single-and double-layer structure on the impact resistance of sandwich shells was studied when the total thickness of the sandwich structure was unchanged. The results show that compared with the single-layer structure, the energy absorption efficiency, overall deformation, and contact force between the projectile and structure of the double-layer structure will be reduced.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Sinchai Chinvorarat ◽  
Pumyos Vallikul

Purpose The purpose of this paper is to present a novel retractable main landing gear for a light amphibious airplane, while the design, synthesis and analysis are given in details for constructing the main landing gear. Design/methodology/approach The constraint three-position synthesis has given the correct path of all linkages that suitably fit the landing gear into the compartment. The additional lock-link is introduced into the design to ensure the securement of the mechanism while landing. Having the telescopic gas-oil shock strut as a core element to absorb the impact load, it enhances the ability and efficiency to withstand higher impact than others type of light amphibious airplane. Findings By kinematics bifurcation analysis, the optimized value of the unlock spring stiffness at 90 N/m can be found to tremendously reduce the extended-retracted linear actuator force from 500 N to 150 N at the beginning of the retraction sequence. This could limit the size and weight of the landing gear actuator of the light amphibious airplane. Practical implications The drop test of the landing gear to comply with the ASTM f-2245 (Standard Specification for Design and Performance of a Light Sport Airplane) reveals that the novel landing gear can withstand the impact load at the drop height determined by the standard. The maximum impact loading 4.8 G occurs at the drop height of 300 mm, and there is no sign of any detrimental or failure of the landing gear or the structure of the light amphibious airplane. The impact settling time response reaches the 2% of steady-state value in approximately 1.2 s that ensure the safety and stability of the amphibious airplane if it subjects to an accidentally hard landing. Originality/value This paper presents unique applications of a retractable main landing gear of a light amphibious airplane. The proposed landing gear functions properly and complies with the drop test standard, ensuring the safety and reliability of the airplane and exploiting the airworthiness certification process.


Author(s):  
Mengyan Shi ◽  
Jiayao Ma ◽  
Yan Chen ◽  
Zhong You

Thin-walled tubes as energy absorption devices are widely in use for their low cost and high manufacturability. Employing origami technique on a tube enables induction of a predetermined failure mode so as to improve its energy absorption efficiency. Here we study the energy absorption of a hexagonal tubular device named the origami crash box numerically and theoretically. Numerical simulations of the quasi-static axial crushing show that the pattern triggers a diamond-shaped mode, leading to a substantial increase in energy absorption and reduction in initial peak force. The effects of geometric parameters on the performance of the origami crash box are also investigated through a parametric study. Furthermore, a theoretical study on the deformation mode and energy absorption of the origami crash box is carried out, and a good match with numerical results is obtained. The origami crash box shows great promise in the design of energy absorption devices.


2018 ◽  
Vol 777 ◽  
pp. 569-574
Author(s):  
Zhong You Xie

Due to thin skins and soft core, it is apt to local indentation inducing the concurrence of geometrical and material nonlinearity in sandwich structures. In the paper, finite element simulation is used to investigate the bending behavior of lightweight sandwich beams under large deflection. A modified formulation for the moment at mid-span section of sandwich beams under large deflection is presented, and energy absorption performance is assessed based on energy absorption efficiency. In addition, it is found that no local indentation arises initially, while later that increases gradually with loading displacement increasing. The height of the mid-span section as well as load-carrying capacity decreases significantly with local indentation depth increasing.


2017 ◽  
Vol 865 ◽  
pp. 612-618 ◽  
Author(s):  
M. Malawat ◽  
Jos Istiyanto ◽  
D.A. Sumarsono

Crush initiators are the weakest points to reduce initial peak load force with significant energy absorption ability. The objective of this paper is to study the effects of square tube thickness and crush initiators position for impact energy absorber (IEA) performance on thin-walled square tubes. Two square tubes having thickness about 0.6 mm (specimen code A) and 1 mm (specimen Code C) were tested under dynamic load. The crushing initiator is designed around the shape of the tube wall and has eight holes with a fixed diameter of 6.5 mm. In the experiment, the crushing initiator was determined at 5 different locations on the specimen wall. These locations are 10 mm, 20 mm. 30 mm, 40 mm, and 50 mm measured from the initial collision position of the specimen tested. The impact load mass was about 80 kg and had a drop height of about 1.5 m. Using the simulation program of the LabVIEW Professional Development System 2011 and National Instrument (NI) 9234 software equipped with data acquisition hardware NI cDAQ-9174 the signal from the load cell was sent to a computer. By controlling the thickness of the thin-walled square tube, the peak loading force can be decreased by approximately 56.75% and energy absorption ability of IEA can be increased approximately to 11.83%. By using different thin-walled square tube can produce different best crush initiators position with the lowest peak load force.


2021 ◽  
Vol 889 ◽  
pp. 123-128
Author(s):  
Sheng Jun Liu ◽  
Zhi Qiang Dong ◽  
Ren Zhong Cao ◽  
Da Song ◽  
Jia An Liu ◽  
...  

In this study, the open-cell Mg-2Zn-0.4Y foams were prepared by infiltration casting method. The Ni/Mg hybrid foams were prepared by electroless Ni-P coating on the foam struts to improve the compressive strength and energy absorption capacity. The compressive properties of the Mg alloy foams and Ni/Mg hybrid foams were studied by quasi-static compressive test. The experimental results show that the Ni-P coating is composed of crystallites. The Ni-P coating can significantly enhance the compressive strength, energy absorption capacity and energy absorption efficiency of the foams.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Rita Marques

PurposeThis viewpoint aims to explore the question: How can we restart and monitor the path towards the tourism of the future?Design/methodology/approachThis paper identifies the progress made at scientific, institutional, political and technological levels, and how it is possible to foresee that we will enter in a new era of tourism indicators.FindingsA significant body of literature clearly demonstrates that tourism cannot be viewed simply from an economic point of view as it has a great influence on sociocultural and environmental dimensions. The impact of tourism and how to ensure its long-term success has been invoked for the last few decades, leading to the direct consideration of sustainability indicators in a wide array of scientific publications. However, despite significant advances, the lack of funding, lack of support or interest from the political community, bureaucracies or lack of methodological guidance and of technical skills along the entire value chain pose clear challenges to the development and adoption of wide data systems to support sustainable tourism policies.Originality/valueThe paper sheds light on the Portuguese position regarding the recovery of the tourism sector in the aftermath of the COVID-19 pandemic. It also highlights the commitment to knowledge and monitoring of sustainability in tourism, articulated at international level, and how this is essential in order to make progress and to overcome the challenges facing the sector. At the same time, it demonstrates how fundamental it is to identify solutions to boost the potential of tourism as an economic, social, environmental and cultural phenomenon.


Metals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1579 ◽  
Author(s):  
Yang Yu ◽  
Zhuokun Cao ◽  
Ganfeng Tu ◽  
Yongliang Mu

The energy absorption of different cell structures for closed-cell aluminum foam-filled Al tubes are investigated through quasi-static compression testing. Aluminum foams are fabricated under different pressures, obtaining aluminum foams with different cell sizes. It is found that the deformation of the foam core is close to the overall deformation, and the deformation band is seriously expanded when the cell size is fined, which leads to the increase of interaction. Results confirm that the foam-filled tubes absorb more energy due to the increase of interaction between the foam core and tube wall when the foaming pressure increases. The energy absorption efficiency of foam-filled tubes can reach a maximum value of 90% when the foam core is fabricated under 0.30 MPa, which demonstrates that aluminum foams fabricated under increased pressure give a new way for the applications of foam-filled tubes in the automotive industry.


Sign in / Sign up

Export Citation Format

Share Document