Laser micro-machined 28 GHz broad band single feed microstrip antenna for 5G mm-wave applications

Circuit World ◽  
2019 ◽  
Vol 46 (1) ◽  
pp. 6-12
Author(s):  
Melvin C. Jose ◽  
Radha Sankararajan ◽  
Sreeja B.S. ◽  
Pratap Kumar Pratap Kumar

Purpose This paper aims to propose a laser micro-machined 4 × 4 elements microstrip array antenna suitable for 5 G millimeter wave (mm-wave) applications. Each patch element of the array is excited with same amplitude and phase that is achieved with proper novel impedance matching stub. The proposed antenna achieves a simulated gain of 13.15 dBi and a measured return loss of −24.80 dB at 28.73 GHz with a total bandwidth of 7.48 GHz. The designed antenna is directional with a directivity of 15.1 dBi at 28.73 GHz, whereas fabricated on a low cost FR4 substrate with a substrate thickness of 0.074 λ mm. The antenna is realized with an aperture size of 2.24λ × 3.26λ. Design/methodology/approach The antenna structure starts from the design of single element called unit cell. The single element is designed using the transmission line model equations of a rectangular patch. To design a 28 GHz microstrip patch antenna, a dielectric material with lower permittivity and having thickness (h) less than 1 mm is required. This specification gives better gain and efficiency by reducing surface waves and mutual coupling between elements. The inset width is optimized to achieve the minimum reflection coefficient (S11). The single element has been arranged with a minimum spacing of λ/2 (5.3571 mm) in an H plane and E plane. It is connected using the microstrip lines with proper impedance matching. The four 2 × 2-sub array cell subsystems are connected with a corporate feed together formed the 4 × 4-array cell. Rectangular planar array method is used to arrange the elements in the 4 × 4 array cell. Findings The design concept is simple which includes the combination of corporate feed and insect feed. It is compact in size and easy to fabricate. The bandwidth of fabricated prototype antenna array is achieved as 7.48 GHz from 24.98 GHz to 32.46 GHz. The mutual coupling is very less though the antenna array is placed with minimum spacing between adjacent elements. This is because of the microstrip feeding structure with minimum phase shift. The gain can be further enhanced with increasing number of array element and proper designing of feed line. Owing to the advantages of low profile, wide bandwidth and high gain, the designed array will be potentially useful in 5 G wireless communications. Originality/value The measured antenna offers bandwidth 7.48 GHz (24.98 GHz-32.46 GHz) with centered frequency 28.73 GHz. The agreement between simulated and measured results is good. The VSWR is observed 0.32 < 2, offers good impedance matching and low mutual coupling. It gives better E-Field and H-field radiation patterns of the 4 × 4 array antenna structure at 28 GHz. The total gain of 13.14 dBi is achieved at the center frequency. The total efficiency of 63.42 per cent is achieved with FR4 substrate.

Electronics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 673
Author(s):  
Mian Kamal ◽  
Shouyi Yang ◽  
Saad Kiani ◽  
Daniyal Sehrai ◽  
Mohammad Alibakhshikenari ◽  
...  

To address atmospheric attenuation and path loss issues in the mmwave portion of the spectrum, high gain and narrow beam antenna systems are essential for the next generation communication networks. This paper presents a novel hook-shaped antenna array for 28 GHz 5G mmwave applications. The proposed antenna was fabricated on commercially available Rogers 5880 substrate with thickness of 0.508 mm and dimensions of 10 × 8 mm2. The proposed shape consists of a circle with an arc-shaped slot on top of it and T-shaped resonating lengths are introduced in order to attain broad band characteristics having gain of 3.59 dBi with radiation and total efficiency of 92% and 86% for single element. The proposed structure is transformed into a four-element array with total size of 26.9 × 18.5 mm2 in order to increase the gain up to 10.3 dBi at desired frequency of interest. The four-element array is designed such that it exhibits dual-beam response over the entire band of interest and the simulated results agree with fabricated prototype measurements. The proposed antenna array, because of its robustness, high gain, and dual-beam characteristics can be considered as a potential candidate for the next generation 5G communication systems.


Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1415
Author(s):  
Mian Muhammad Kamal ◽  
Shouyi Yang ◽  
Saad Hassan Kiani ◽  
Muhammad Rizwan Anjum ◽  
Mohammad Alibakhshikenari ◽  
...  

This article presents compact and novel shape ring-slotted antenna array operating at mmWave band on central frequency of 28 GHz. The proposed structure designed at 0.256 mm thin Roggers 5880 is composed of a ring shape patch with a square slot etched at the top mid-section of partial ground plane. Through optimizing the ring and square slot parameters, a high bandwidth of 8 GHz is achieved, ranging from 26 to 32 GHz, with a simulated gain of 3.95 dBi and total efficiency of 96% for a single element. The proposed structure is further transformed in a 4-element linear array manner. With compact dimensions of 20 mm × 22 mm for array, the proposed antenna delivers a high simulated gain of 10.7 dBi and is designed in such a way that it exhibits dual beam response over the entire band of interest and simulated results agree with fabricated prototype measurements.


Circuit World ◽  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Khader Zelani Shaik ◽  
Siddaiah P. ◽  
K. Satya Prasad

Purpose Millimeter wave spectrum represents new opportunities to add capacity and faster speeds for next-generation services as fifth generation (5G) applications. In its Spectrum Frontiers proceeding, the Federal Communications Commision decided to focus on spectrum bands where the most spectrums are potentially available. A low profile antenna array with new decoupling structure is proposed and expected to resonate at higher frequency bands, i.e. millimeter wave frequencies, which are suitable for 5G applications. Design/methodology/approach The presented antenna contains artificial magnetic conductor (AMC) surface as decoupling structure. The proposed antenna array with novel AMC surface is operating at 29.1GHz and proven to be decoupling structure and capable of enhancing the isolation by reducing mutual coupling as 8.7dB between the array elements. It is evident that, and overall gain is improved as 10.1% by incorporating 1x2 Array with AMC Method. Mutual coupling between the elements of 1 × 2 antenna array is decreased by 39.12%. Findings The proposed structure is designed and simulated using HFSS software and the results are obtained in terms of return loss, gain, voltage standing wave ratio (VSWR) and mutual coupling. The S-Parameters of each stage of design is tabulated and compared with each other to prove the decoupling capability of AMC surface in antenna arrays. Originality/value The proposed structure is designed and simulated using HFSS software, and the results are obtained in terms of return loss, gain, VSWR and mutual coupling. The S-Parameters of each stage of design is tabulated and compared with each other to prove the decoupling capability of AMC surface in antenna arrays.


In this paper, a two elements antenna array with defective ground structure (DGS) has been designed to achieve significant gain, polarization purity and reduced mutual coupling. A 3 port Wilkinson power divider has been designed at 4.5 GHz frequency to obtain equal power distribution at the output ports. Two Rectangular microstrip patch antennas with DGS at the corners yield improved gain, impedance matching and polarization purity in both E and H plane. The reduction of mutual coupling and side lobe level (SLL) have been achieved by placing the dumbbell shaped DGS bellow the feed line of the power divider. The radiation performances obtained using the fabricated prototype agrees well with that of the simulated one. This array has been designed for C-band application.


2016 ◽  
Vol 9 (3) ◽  
pp. 705-710 ◽  
Author(s):  
Majid- Fakheri ◽  
Mohammad Naser-Moghadasi ◽  
Ramezan Ali- Sadeghzadeh

This paper presents a new broad band circularly polarized slot antenna array based on substrate-integrated waveguide (SIW) and aperture feeding techniques. The antenna element's impedance and 3 dB axial-ratio (AR) bandwidths are from 8.8 to 10.4 GHz (16.67%) and 9.5–10.7 GHz (12%), respectively. Employing aperture-coupled feed and combining this method with sequentially rotated network, a 2 × 2 antenna array is achieved. Parametric optimization procedure is used to enhance the antenna specifications. In the presented scheme by reducing mutual coupling caused by the SIW technique and sequentially rotated feed network, all parameters of antenna are improved. Consequently a novel antenna array with impedance bandwidth of 2.8 GHz (8.7–11.5 GHz) and 3 dB AR bandwidth of 2.1 GHz (9–11.05 GHz) are obtained. The average gain of the proposed antenna is about 16.7 dBic. A new method is used to increase the gain of antenna array. The extracted result shows that side lob level, mutual coupling, impedance bandwidth, and performance of antenna simultaneously are controlled.


Author(s):  
Lin Teng ◽  
Jingrui Pei ◽  
Shoulin Yin

<p><em>In this paper, we perfect the mutual coupling of compact microstrip array antenna by designing a new defected ground structure. When the resonant frequency is 2.45GHz, array element spacing is 0.1 times of free space wavelength, we introduce new defected ground structure into antenna array. Then we use HFSS to make simulation and compare the changing of antenna's parameters before and after adding defected ground structure. The results demonstrate that the parameters representing mutual coupling in new model can reduce by 30dB, which effectively perfects the mutual coupling of compact microstrip array antenna.</em><em></em></p>


2021 ◽  
Vol 23 (06) ◽  
pp. 56-61
Author(s):  
Sudarshan Bhat ◽  
◽  
Priyadarshini K Desai ◽  

Slots are generally introduced in the antenna or antenna to improve the impedance matching, improve the bandwidth, and gain. Sometimes slots are introduced in the ground planes, or between antenna elements to reduce the mutual coupling between elements. The antenna being an important element in wireless communication technology, the design of the same with different requirements is important. This paper gives the survey of the slot antenna and antenna array constructed through waveguide and microstrip lines, to meet different antenna parameters as required in various wireless communication technology.


2014 ◽  
Vol 10 (1) ◽  
pp. 48-54
Author(s):  
Abdulkareem Abdullah ◽  
Asmaa Majeed ◽  
Khalil Sayidmarie ◽  
Raed Abd-Alhameed

In this paper, a compact two-element cylindrical dielectric resonator antenna (CDRA) array with corporate feeding is proposed for X-band applications. The dielectric resonator antenna (DRA) array is excited by a microstrip feeder using an efficient aperture-coupled method. The designed array antenna is analyzed using a CST microwave studio. The fabricated sample of the proposed CDRA antenna array showed bandwidth extending from 10.42GHz to 12.84GHz (20.8%). The achieved array gain has a maximum of 9.29dBi at frequency of 10.7GHz. This is about 2.06dBi enhancement of the gain in comparison with a single pellet CDRA. The size of the whole antenna structure is about 5050mm2.


Circuit World ◽  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yousra Ghazaoui ◽  
Mohammed EL Ghzaoui ◽  
Sudipta Das ◽  
BTP Madhav ◽  
Ali el Alami

Purpose This paper aims to present the design, fabrication and analysis of a wideband, enhanced gain 1 × 2 patch antenna array with a simple profile structure to meet the desired antenna traits, such as wide bandwidth, high gain and directional patterns expected for the upcoming fifth-generation (5G) wireless applications in the millimeter wave band. To enhance these parameters (bandwidth and gain), a new antenna geometry by using a T-junction power divider is presented. Design/methodology/approach The theory behind this paper is connected with advancements in the 5G communications related to antennas. The methodology used in this work is to design a high gain array antenna and to identify the best possible power divider to deliver the power in an optimized way. The design methodology adopts several steps like the selection of proper substrate material as per the design specification, size of the antenna as per the frequency of operation and application-specific environment condition. The simulation has been performed on the designed antenna in the electromagnetic simulation tool (high-frequency structure simulator [HFSS]), and optimization has been done with parametric analysis, and then the final array antenna model is proposed. The proposed array contains 2-patch elements excited by one port adapted to 50 Ω through a T-junction power divider. The 1 × 2 array configuration with the suggested geometry helps to improve the overall gain of the antenna, and the implementation of the T-junction power divider provides enhanced bandwidth. The proposed array designed using a 1.6 mm thick flame retardant substrate occupies a compact area of 14 × 12.14 mm2. Findings The prototype of the array antenna is fabricated and measured to validate the design concept. A good agreement has been reached between the measured and simulated antenna parameters. The measured results confirm its wideband and high gain characteristics, covering 24.77–28.80 GHz for S11= –10 dB with a peak gain of about 15.16 dB at 27.65 GHz. Originality/value The proposed antenna covers the bandwidth requirements of the 26 GHz n258 band (24.25–27.50 GHz) to be deployed in the UK and Europe. The suggested antenna structure also covers the federal communications commission (FCC)-regulated 28 GHz n261 band (27.5–28.35 GHz) to be deployed in America and Canada. The low profile, compact size, simple structure, wide bandwidth, high gain and desired directional radiation patterns confirm the applicability of the suggested array antenna for the upcoming 5 G wireless systems.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Yi Liu ◽  
Hu Yang ◽  
Zusheng Jin ◽  
Jiang Zhu

The effects of mutual coupling in beam scanning arrays increase degradation in gain as the beam is scanned off the broadside. A simple and effective approach for a deployed SIW slot array antenna through the use of artificially structured materials is proposed to improve its performance of wide-angle scanning in the E-plane. Metasurface slabs of one-tenth wavelength electric-inductive-capacitive (ELC) resonators are vertically placed halfway between the adjacent waveguides without changing the antenna structure to realize wide-angle impedance matching (WAIM). The ELC metasurface is designed to operate at a linear region rather than at a resonance region to use its transmission property for greatly weakening mutual couplings. Inserting metasurface slabs between two adjacent waveguides to reduce the mutual coupling can achieve impedance matching at large scan angles. A 10 × 10 SIW slot array operating at X-band is modelled and simulated to study how the vertically placed ELC metasurface slabs over the antenna affect the array’s beam scanning performance. The simulated results show that the scan range of the antenna is extended from −50° to 50° to −70° to 70° under the criteria that radiating efficiency is greater than 80%.


Sign in / Sign up

Export Citation Format

Share Document