Comparison between thermal resistances of optimized water-based and gallium-based heat sinks using the genetic algorithm

2019 ◽  
Vol 30 (3) ◽  
pp. 1388-1406
Author(s):  
Xiong Xiang ◽  
Yu Fan ◽  
Wei Liu ◽  
Aiwu Fan

Purpose The purpose of this paper is to compare the thermal resistances between optimized gallium- and water-based heat sinks to show which one is superior. Design/methodology/approach Taking the thermal resistances of heat sinks as the goal function, an optimization process is programmed based on the genetic algorithm. The optimal channel/fin widths and the corresponding thermal resistances of gallium- and water-based heat sinks are obtained and compared with/without a laminar flow constraint. The analytic model and CFD method are applied in different situations to ensure sufficient accuracy. Findings The results show that in the laminar regime, the thermal resistance of optimized gallium-based heat sink is lower than the water-based counterpart in most cases, but the latter becomes better if it is long enough or the channel is sufficient high. Without the laminar constraint, the thermal resistance of the optimized gallium-based heat sink can be decreased by 33-45 per cent compared with the water-based counterparts. It is interesting to find that when the heat sink is long or the channel height is short, the optimal geometry of gallium-based heat sink is a mini gap. Originality/value This paper demonstrates that the cooling performance of gallium-based heat sink can be significantly improved by optimization without the laminar flow constraint.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Krzysztof Posobkiewicz ◽  
Krzysztof Górecki

Purpose The purpose of this study is to investigate the validation of the usefulness of cooling systems containing Peltier modules for cooling power devices based on measurements of the influence of selected factors on the value of thermal resistance of such a cooling system. Design/methodology/approach A cooling system containing a heat-sink, a Peltier module and a fan was built by the authors and the measurements of temperatures and thermal resistance in various supply conditions of the Peltier module and the fan were carried out and discussed. Findings Conclusions from the research carried out answer the question if the use of Peltier modules in active cooling systems provides any benefits comparing with cooling systems containing just passive heat-sinks or conventional active heat-sinks constructed of a heat-sink and a fan. Research limitations/implications The research carried out is the preliminary stage to asses if a compact thermal model of the investigated cooling system can be formulated. Originality/value In the paper, the original results of measurements and calculations of parameters of a cooling system containing a Peltier module and an active heat-sink are presented and discussed. An influence of power dissipated in the components of the cooling system on its efficiency is investigated.


Author(s):  
Nico Setiawan Effendi ◽  
Kyoung Joon Kim

A computational study is conducted to explore thermal performances of natural convection hybrid fin heat sinks (HF HSs). The proposed HF HSs are a hollow hybrid fin heat sink (HHF HS) and a solid hybrid fin heat sink (SHF HS). Parametric effects such as a fin spacing, an internal channel diameter, a heat dissipation on the performance of HF HSs are investigated by CFD analysis. Study results show that the thermal resistance of the HS increases while the mass-multiplied thermal resistance of the HS decreases associated with the increase of the channel diameter. The results also shows the thermal resistance of the SHF HS is 13% smaller, and the mass-multiplied thermal resistance of the HHF HS is 32% smaller compared with the pin fin heat sink (PF HS). These interesting results are mainly due to integrated effects of the mass-reduction, the surface area enhancement, and the heat pumping via the internal channel. Such better performances of HF HSs show the feasibility of alternatives to the conventional PF HS especially for passive cooling of LED lighting modules.


Author(s):  
Krishna Kota ◽  
Mohamed M. Awad

In this effort, theoretical modeling was employed to understand the impact of flow bypass on the thermal performance of air cooled heat sinks. Fundamental mass and flow energy conservation equations across a longitudinal fin heat sink configuration and the bypass region were applied and a generic parameter, referred as the Flow Bypass Factor (α), was identified from the theoretical solution that mathematically captures the effect of flow bypass as a quantifiable parameter on the junction-to-ambient thermal resistance of the heat sink. From the results obtained, it was found that, at least in the laminar regime, the impact of flow bypass on performance can be neglected for cases when the bypass gap is typically less than 5% of the fin height, and is almost linear at high relative bypass gaps (i.e., usually for bypass gaps that are more than 10–15% of the fin height). It was also found that the heat sink thermal resistance is more sensitive to small bypass gaps and the effect of flow bypass decreases with increasing bypass gap.


Author(s):  
Gongnan Xie ◽  
Shian Li ◽  
Bengt Sunden ◽  
Weihong Zhang

Purpose – With the development of electronic devices, including the desires of integration, miniaturization, high performance and the output power, cooling requirement of chips have been increased gradually. Water-cooled minichannel is an effective cooling technology for cooling of heat sinks. The minichannel flow geometry offers large surface area for heat transfer and a high convective heat transfer coefficient with only a moderate pressure loss. The purpose of this paper is to analyze a minichannel heat sink having the bottom size of 35 mm×35 mm numerically. Two kinds of chip arrangement are investigated: diagonal arrangement and parallel arrangement. Design/methodology/approach – Computational fluid dynamics (CFD) technique is used to investigate the flow and thermal fields in forced convection in a three-dimensional minichannels heat sink with different chip arrangements. The standard k-e turbulence model is applied for the turbulence simulations on the minichannel heat sink. Findings – The results show that the bottom surface of the heat sink with various chip arrangements will have different temperature distribution and thermal resistance. A suitable chip arrangement will achieve a good cooling performance for electronic devices. Research limitations/implications – The fluid is incompressible and the thermophysical properties are constant. Practical implications – New and additional data will be helpful as guidelines in the design of heat sinks to achieve a good thermal performance and a long lifetime in operation. Originality/value – In real engineering situations, chips are always placed in various manners according to design conditions and constraints. In this case the assumption of uniform heat flux is acceptable for the surfaces of the chips rather than for the entire bottom surface of the heat sink.


Author(s):  
Jingru Zhang ◽  
Po Ting Lin ◽  
Yogesh Jaluria

In this paper, two different configurations of multiple microchannel heat sinks with fluid flow are investigated for electronic cooling: straight and U-shaped channel designs. Numerical models are utilized to study the multiphysics behavior in the microchannels and validated by comparisons with experimental results. Three responses, including thermal resistance, pressure drop, and maximum temperature, are parametrically modeled with respect to various variables such as dimensions of the channels, total number of channels, and flow rate. Multi-objective optimization problems, which minimize the thermal resistance and the pressure drop simultaneously, are formulated and studied. Physical constraints in terms of channel height, maximum temperature, and pressure are further investigated. The Pareto frontiers are studied and the trade-off behavior between the thermal resistance and the pressure drop are discussed.


Author(s):  
T. J. John ◽  
B. Mathew ◽  
H. Hegab

In this paper the authors are studying the effect of introducing S-shaped pin-fin structures in a micro pin-fin heat sink to enhance the overall thermal performance of the heat sinks. For the purpose of evaluating the overall thermal performance of the heat sink a figure of merit (FOM) term comprising both thermal resistance and pumping power is introduced in this paper. An optimization study of the overall performance based on the pitch distance of the pin-fin structures both in the axial and the transverse direction, and based on the curvature at the ends of S-shape fins is also carried out in this paper. The value of the Reynolds number of liquid flow at the entrance of the heat sink is kept constant for the optimization purpose and the study is carried out over a range of Reynolds number from 50 to 500. All the optimization processes are carried out using computational fluid dynamics software CoventorWARE™. The models generated for the study consists of two sections, the substrate (silicon) and the fluid (water at 278K). The pin fins are 150 micrometers tall and the total structure is 500 micrometer thick and a uniform heat flux of 500KW is applied to the base of the model. The non dimensional thermal resistance and nondimensional pumping power calculated from the results is used in determining the FOM term. The study proved the superiority of the S-shaped pin-fin heat sinks over the conventional pin-fin heat sinks in terms of both FOM and flow distribution. S-shaped pin-fins with pointed tips provided the best performance compared to pin-fins with straight and circular tips.


Author(s):  
Felipe E. Ortega-Gutierrez ◽  
Alfonso Ortega

Detailed temperature and pressure measurements in high aspect ratio parallel plate fin heat sinks were made in a Top Inlet Side Exit (TISE) experiment configuration without top bypass flow. Air flow was supplied to the top of the heat sink using a rectangular jet nozzle with three different jet nozzle widths, Wj. The study covered five jet velocities and three different jet nozzle width to heat sink length ratios. Static pressure measurements were made along the spanwise centerline inside the heat sink and on the mounting plate outside the heat sink. The measurements were used to study the influence of the jet impinging on the top of the heat sink on the loss coefficient of the heat sink. It was found that the overall loss coefficient was dependent on Re, Wj, the fin spacing, b, and the jet nozzle width relative to the heat sink length, Wj/L. Temperature measurements were made to study the total thermal resistance with no base heat spreading. An ad hoc model was used to predict the total thermal resistance of the heat sink in this complicated flow. The model modifies the total cooled area of the fin as a function of jet width and heat sink geometry. Good agreement was found with the experimental data for the cases of Wj/L = 1.0 and 0.5. The model does not work well in the case of Wj/L = 0.25.


2016 ◽  
Vol 33 (1) ◽  
pp. 15-22 ◽  
Author(s):  
Shanmugan Subramani ◽  
Mutharasu Devarajan

Purpose – The purpose of this research is to study the effect of thickness and surface properties of ZnO solid thin film for heat dissipation application in LED. Heat dissipation in electronic packaging can be improved by applying a thermally conductive interface material (TIM) and hence the junction temperature will be maintained. ZnO is one of the oxide materials and used as a filler to increase the thermal conductivity of thermal paste. The thickness of these paste-type material cannot be controlled which restricts the heat flow from the LED junction to ambient. The controlled thickness is only possible by using a solid thin-film interface material. Design/methodology/approach – Radio Frequency (RF)-sputtered ZnO thin film on Cu substrates were used as a heat sink for high-power LED and the thermal performance of various ZnO thin film thickness on changing total thermal resistance (R th-tot) and rise in junction temperature were tested. Thermal transient analysis was used to study the performance of the given LED. The influence of surface roughness profile was also tested on the LED performance. Findings – The junction temperature was high (6.35°C) for 200 nm thickness of ZnO thin film boundary condition when compared with bare Cu substrates. Consecutively, low R th-tot values were noticed with the same boundary condition. The 600 nm thickness of ZnO thin film exhibited high R th-tot and interface resistance than the other thicknesses. Bond Line Thickness of the interface material was influenced on the interface thermal resistance which was decreased with increased BLT. Surface roughness parameter showed an immense effect on thermal transport, and hence, low R th (47.6 K/W) value was noticed with low film roughness (7 nm) as compared with bare Cu substrate (50.8 K/W) where the surface roughness was 20.5 nm. Originality/value – Instead of using thermal paste, solid thin film ZnO is used as TIM and coated Cu substrates were used as a heat sink. The thickness can be controlled, and it is a new approach for reducing the BLT between the metal core printed circuit board and heat sink.


Author(s):  
Robert E. Seidel ◽  
Jinny Rhee

Heat sinks are one of the primary mechanisms today for thermal management of electronics. In the high altitudes reached by modern military aircraft, the capacity for air cooling is reduced due to the rarefied atmosphere. With an increase in altitude there is a subsequent decrease in the density of air. A review of the literature shows a lack of research done on pin-fin heat sinks with impingement flows at low Reynolds number conditions. Experimental testing will determine the thermal resistance of a pin-fin heat sink with impingement flow at low absolute pressures. A test apparatus will be constructed, and experiments will be conducted within a hypobaric chamber. In a hypobaric chamber, it is possible to simulate altitudes up to 30 000 meters by reducing the absolute pressure using a vacuum pump. Temperature is regulated and air is circulated within the chamber. The test apparatus, which is to be completely enclosed within the hypobaric chamber, consists of a centrifugal blower forcing air through a duct. Air is impinged upon a pin-fin heat sink heated with uniform flux on the base. Incident air flow is along the axis of each circular pin-fin, and exhaust from the heat sink will be transverse to the pins. Feedthroughs are available in the chamber wall for supplying electrical power to the blower, for taking temperature measurements with embedded thermocouples, and for measuring blower shaft speed. Temperature measurements are made in the base of the heat sink, in the air, and at other points to characterize other heat losses from the apparatus. Blower speed is monitored with an optical tachometer, and by similarity laws for turbomachinery it will be possible to determine the air flow impinging upon the heat sink. Pressure in the chamber will be varied in several steps up to the equivalent of a 30 000-meter altitude, and at each step a correlation will be made between heat sink thermal resistance and Reynolds number of the impinging air.


2021 ◽  
pp. 81-81
Author(s):  
Zulfiqar Khattak ◽  
Hafiz Ali

Heat dissipation is becoming more and more challenging with the preface of new electronic components having staggering heat generation levels. Present day solutions should have optimized outcomes with reference to the heat sink scenarios. The experimental and theoretical results for plate type heat sink based on mathematical models have been presented in the first part of the paper. Then the parametric optimization (topology optimization) of plate type heat sink using Levenberg-Marquardt technique employed in the COMSOL Multiphysics? software is discussed. Thermal resistance of heat sink is taken as objective function against the variable length in a predefined range. Single as well as multi-parametric optimization of plate type heat sink is reported in the context of pressure drop and air velocity (Reynolds number) inside the tunnel. The results reported are compared with the numerical modeled data and experimental investigation to establish the conformity of results for applied usage. Mutual reimbursements of greater heat dissipation with minimum flow rates are confidently achievable through balanced, heat sink geometry as evident by the presented simulation outcome. About 12% enhancement in pressure drop and up to 51% improvement in thermal resistance is reported for the optimized plate fin heat sink as per data manifested.


Sign in / Sign up

Export Citation Format

Share Document