Finite element simulation on clothing pressure and body deformation of the top part of men’s socks using curve fitting equations

2015 ◽  
Vol 27 (2) ◽  
pp. 207-220 ◽  
Author(s):  
Mei Zhang ◽  
Henan Dong ◽  
Xuerong Fan ◽  
Rui Dan

Purpose – Objective appraisal of pressure comfort is the basement of optimal design of clothing. The purpose of this paper is to study a new method to appraise pressure comfort through displacement distribution, and then explored the multiple relationship between pressure and displacement on the lower leg cross-section using finite element method (FEM) and curve fitting. Design/methodology/approach – This paper presented a 2D simulation model of the lower leg cross-section consisting of three layer different mechanical properties, namely skin, soft tissue, and bone. Analyzed the relationship and variation tendency between contact pressure and strain, calculated the multiple relationship between pressure and displacement on the lower leg cross-section where located at the top part of men’s socks in detail, and then obtained the quadratic functional equation between angle and pressure/displacement ratio through segmented curve fitting using Origin 7.5 software. Findings – In this research work, the mathematical equation is obtained which describe the relationship between angle and pressure/displacement of the top part of men’s socks. On the premise of the known contact pressure values on the lower leg cross-section, the corresponding displacement values on the human body surface can be obtained by the functional equation under stress, and this displacement could be used as an objective evaluation index for pressure comfort. Based on these conclusions, the authors could provide theoretical reference for pressure prediction and optimizing the design of clothing. Research limitations/implications – This paper is unconcerned with the simulating of pressure, strain, and displacement distribution when dressing during the course of walking and running. Originality/value – The paper analyzed the relationship and variation tendency between contact pressure and strain using FEM, and then obtained the quadratic functional equation between angle and pressure/displacement ratio of the top part of socks. It can supply a new method to appraise pressure comfort.

2015 ◽  
Vol 27 (5) ◽  
pp. 751-766 ◽  
Author(s):  
Rui Dan ◽  
Xuerong Fan ◽  
Zhen Shi ◽  
Mei Zhang

Purpose – The purpose of this paper is to study a new method to appraise pressure comfort through displacement distribution, and then explore the relationship between pressure and stiffness coefficient, and elastic elongation of the top part of men’s socks using finite element method. Design/methodology/approach – Through 3D body scanning, a biomechanical lower leg cross-section model is constructed for simulating elastic contact between human body and top part of socks. The human body is regarded as an elastomer and the contact between lower leg and top part of socks is elastic contact, displacement distribution tendency under pressure can be obtained using ANSYS, and the elastic elongation of top part of socks after putting on was calculated based on the displacement values. In this research work, the authors discuss in details with the relationship between pressure and stiffness coefficient, and elastic elongation of top part of socks. Findings – In this research work, the mathematical equation of pressure is obtained which describe the relationship between pressure and stiffness coefficient, and elastic elongation of top part of socks. The results indicated that the predictive values of pressure show good agreement with measured ones after χ2 test. All these solutions supply a theory basis for forecasting of the clothing pressure. Research limitations/implications – This paper is unconcerned with the simulating of pressure distribution and variation trend when dressing during the course of walking and running. Originality/value – The paper provides a finite element simulation model of lower leg cross-section located at the top part of men’s socks, and study the relationship between pressure and stiffness coefficient, and elastic elongation of top part of socks. It can supply a new method to appraise pressure comfort.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Rui Dan ◽  
Zhen Shi

PurposeObjective appraisal of pressure comfort is the key point of optimal designing of clothing. The purpose of this paper is to study a new method to provide pressure comfort for the waist of elastic pantyhose through the relationship between pressure and displacement using the finite element method (FEM).Design/methodology/approachThis paper presented a simulation model of the waist cross section consisting of three parts, namely skin, soft tissue and lumbar vertebrae, respectively, according to CT scan. The finite element the model of waist cross-section was established using Mimics software. The pressure–displacement quadratic equation can be obtained using ANSYS software and fitting curves. Meanwhile, we divide the waist cross-section into 12 equal regions according to angle, and then the area shrinkage mass of the waist cross-section can be calculated, respectively.FindingsIn this research work, we got the displacement distribution trend of elastic pantyhose at the waist cross section according to the area shrinkage mass of 12 regions, and this displacement could be used as an objective evaluation index for pressure comfort. All these solutions supply a theoretical reference for optimal design of the women's elastic pantyhose.Originality/valueThe paper analyzed the relationship between pressure and displacement for the waist of elastic pantyhose using FEM, and then got the displacement distribution trend of elastic pantyhose at the waist cross section according to the area shrinkage mass of different regions. It can supply a new method to appraise pressure comfort.


2019 ◽  
Vol 71 (1) ◽  
pp. 54-60 ◽  
Author(s):  
Shixian Xu ◽  
Zhengtao Su ◽  
Jian Wu

Purpose This paper aims to research the influence of pressure, friction factors, roughness and actuating speed to the mixed lubrication models of outstroke and instroke. Design/methodology/approach Mixed lubrication model is solved by finite volume method, which consists of coupled fluid mechanics, deformation mechanics and contact mechanics analyses. The influence of friction factor on the finite element model is also considered. Then, contact pressure, film thickness, friction and leakage have been studied. Findings It was found that the amount of leakage is sensitive to the film thickness. The larger the film thickness is, the greater the influence received from the friction factor, however, the effect of oil film on the friction is negligible. The friction is determined mainly by the contact pressure. The trend of friction and leakage influenced by actuating velocity and roughness is also obtained. Originality/value The influence of friction factor on the finite element model is considered. This can make the calculation more accurate.


2018 ◽  
Vol 33 (3) ◽  
pp. 277-290 ◽  
Author(s):  
Bashar S. Gammoh ◽  
Michael L. Mallin ◽  
Ellen Bolman Pullins ◽  
Catherine M. Johnson

Purpose The purpose of the study is to address the gap in understanding how the brand influences sales outcomes by focusing one’s attention on the salesperson perceptions of the brand and the salesperson brand selling confidence. Design/methodology/approach The study uses a cross-section survey of professional salespeople. SmartPLS was used to estimate the measurement model and test the hypothesized path relationships. Findings The study’s results indicate that salespeople who believe in the strength of the brands they represent are more likely to identify with the brand, are more confident in selling the brand and, overall, tend to perform better, have higher job satisfaction and are more committed to their companies. Originality/value This paper contributes to the sales literature by further exploring the relationship between the brand and sales function in the firm. This area has recently received academic attention but has not yet considered the mediating processes that connect the two areas. This study identifies perceptions of brand strength and brand selling confidence as mechanisms that mediate the impact of brand on sales outcomes.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Dragan D. Milašinović ◽  
Aleksandar Landović ◽  
Danica Goleš

PurposeThe purpose of this paper is to contribute to the solution of the fatigue damage problem of reinforced concrete frames in bending.Design/methodology/approachThe problem of fatigue damage is formulated based on the rheological–dynamical analogy, including a scalar damage variable to address the reduction of stiffness in strain softening. The modal analysis is used by the finite element method for the determination of modal parameters and resonance stability of the selected frame cross-section. The objectivity of the presented method is verified by numerical examples, predicting the ductility in bending of the frame whose basic mechanical properties were obtained by non-destructive testing systems.FindingsThe modal analysis in the frame of the finite element method is suitable for the determination of modal parameters and resonance stability of the selected frame cross-section. It is recommended that the modulus of elasticity be determined by non-destructive methods, e.g. from the acoustic response.Originality/valueThe paper presents a novel method of solving the ductility in bending taking into account both the creep coefficient and the aging coefficient. The rheological-dynamical analogy (RDA) method uses the resonant method to find material properties. The characterization of the structural damping via the damping ratio is original and effective.


2020 ◽  
Vol 87 (11) ◽  
Author(s):  
Kurthan Kersch ◽  
Elmar Woschke

Abstract This work proposes a new method for the fatigue damage evaluation of vibrational loads, based on preceding investigations on the relationship between stresses and modal velocities. As a first step, the influence of the geometry on the particular relationship is studied. Therefore, an analytic expression for Euler Bernoulli beams with a non-constant cross section is derived. Afterward, a general method for obtaining geometric factors from finite element (FE) models is proposed. In order to ensure a fast fatigue damage evaluation, strongly simplified FE-models are used for the determination of both factors and measurement locations. The entire method is demonstrated on three mechanical structures and indicates a better compromise between effort and accuracy than existing methods. For all examples, the usage of velocities and geometric factors obtained from simplified FE models enables a sufficient fatigue damage calculation.


Author(s):  
Shogo Fujita ◽  
Hajime Igarashi

Purpose The tensor complex permeability of a multi-turn coil with elliptic cross-section is analytically expressed. In field analysis, a multi-turn coil can be modeled by the uniform material that has the present tensor complex permeability. It is shown that the frequency characteristic of the present tensor complex permeability is in good agreement with that evaluated by finite element method applied to a unit cell of the multi-turn coil region. Design/methodology/approach The authors introduce a new method to evaluate the complex permeability of a multi-turn rectangular coil. To obtain the complex permeability of a rectangular coil in a closed form, it is approximated as an elliptic coil. Because the rectangular coil has different complex permeabilities in the vertical and horizontal directions, the complex permeability have to be defined in a tensor form. It suffices to discretize the coil region into rather coarse finite elements without considering the skin depth in contrast to the conventional finite element method. Findings The proposed method is shown to give the impedance of multi-turn coils which is in good agreement with results obtained by the conventional finite element (FE) analysis. By extending the proposed approach, the authors can easily perform 3D FE analysis without difficulty in discretization of the coil region with fairly fine finite elements. Moreover, they found that the approximation of rectangular coils as the elliptic coils is valid for analysis of quasi-static fields using this homogenization method. Originality/value The novelty of this study is in the approximation of the rectangular coils with elliptic coils, and the complex permeability for them is formulated here in a closed form. The proposed formula includes that for the round coils. Using the present method, the authors analyze the rectangular coils without fine discretization.


2018 ◽  
Vol 70 (8) ◽  
pp. 1494-1499
Author(s):  
Han Qing ◽  
LiangXi Xie ◽  
Lu Li ◽  
Chuang Jia

Purpose This paper aims to establish a numerical model to calculate contact pressure for rectangular vane sealing surface of hydraulic rotary actuator. Numerical model can be applied to solve the steady-state Reynolds equation after the oil film thickness and the contact pressure distribution curve of the vane sealing surface are obtained. Design/methodology/approach The authors established the numerical model of contact pressure base on the theory of elastic after, the Reynolds equation is solved by the inverse solution. Findings The relationship between the oil film thickness of vane sealing surface and the contact pressure on different sealing location for hydraulic rotary actuator is obtained. At the same time, the lubrication state on the surface of seal is also found when the hydraulic rotary actuator runs stably. Originality/value The study shows that the lubricating state of the vane sealing surface is mixed lubrication, when the rotor of the hydraulic rotary actuator is running stably at a certain speed. Meanwhile, this research will provide a theory basis for later experiment for the hydraulic rotary vane actuator.


Author(s):  
Sarom Ryu ◽  
Jaehyung Ju ◽  
Doo-Man Kim ◽  
Hyeonu Heo

With increasing awareness of energy depletion and environmental pollution, bikes have been paid more attention as an important transportation tool. Folding or separable part design of a bike may increase a use of bikes due to its portable capability. In this study, we suggest a novel separable solid bike tire for a folding bike use. Finite element model with ABAQUS is used to model a polyurethane (PU) separable solid tire. Vertical stiffness and contact pressure are compared with those of a conventional pneumatic bike tire. Elliptical hollow cross-sections of a PU solid tire are investigated to match a vertical stiffness and contact pressure of a conventional pneumatic bike tire. The suggested PU solid tire with an elliptical hollow cross-section shows a lower contact pressure than a pneumatic bike tire when they are designed to be the same load carrying capability.


2017 ◽  
Vol 754 ◽  
pp. 272-275
Author(s):  
S. Mantovani

A hexagonal joint is mechanically analysed. A cross section of the receding contact between the male and female components is modelled as a plane strain problem. Particular attention is paid to the effect of the presence of fillets in the hexagonal male. Finite Element (FE) results show that, for each side of the hexagonal contact, the contact zone constitutes a small portion of the length of the hexagonal side, and separation occurs elsewhere. The normalized peak contact pressure and the contact length along the male sides are numerically evaluated.


Sign in / Sign up

Export Citation Format

Share Document