Seismic application of multi-scale finite element model for hybrid simulation

2018 ◽  
Vol 9 (4) ◽  
pp. 548-559
Author(s):  
Hongxing Jia ◽  
Shizhu Tian ◽  
Shuangjiang Li ◽  
Weiyi Wu ◽  
Xinjiang Cai

Purpose Hybrid simulation, which is a general technique for obtaining the seismic response of an entire structure, is an improvement of the traditional seismic test technique. In order to improve the analysis accuracy of the numerical substructure in hybrid simulation, the purpose of this paper is to propose an innovative hybrid simulation technique. The technique combines the multi-scale finite element (MFE) analysis method and hybrid simulation method with the objective of achieving the balance between the accuracy and efficiency for the numerical substructure simulation. Design/methodology/approach To achieve this goal, a hybrid simulation system is established based on the MTS servo control system to develop a hybrid analysis model using an MFE model. Moreover, in order to verify the efficiency of the technique, the hybrid simulation of a three-storey benchmark structure is conducted. In this simulation, a ductile column—represented by a half-scale scale specimen—is selected as the experimental element, meanwhile the rest of the frame is modelled as microscopic and macroscopic elements in the Abaqus software simultaneously. Finally, to demonstrate the stability and accuracy of the proposed technique, the seismic response of the target structure obtained via hybrid simulation using the MFE model is compared with that of the numerical simulation. Findings First, the use of the hybrid simulation with the MFE model yields results similar to those obtained by the fine finite element (FE) model using solid elements without adding excessive computing burden, thus advancing the application of the hybrid simulation in large complex structures. Moreover, the proposed hybrid simulation is found to be more versatile in structural seismic analysis than other techniques. Second, the hybrid simulation system developed in this paper can perform hybrid simulation with the MFE model as well as handle the integration and coupling of the experimental elements with the numerical substructure, which consists of the macro- and micro-level elements. Third, conducting the hybrid simulation by applying earthquake motion to simulate seismic structural behaviour is feasible by using Abaqus to model the numerical substructure and harmonise the boundary connections between three different scale elements. Research limitations/implications In terms of the implementation of the hybrid simulation with the MFE model, this work is helpful to advance the hybrid simulation method in the structural experiment field. Nevertheless, there is still a need to refine and enhance the current technique, especially when the hybrid simulation is used in real complex engineering structures, having numerous micro-level elements. A large number of these elements may render the relevant hybrid simulations unattainable because the time consumed in the numeral calculations can become excessive, making the testing of the loading system almost difficult to run smoothly. Practical implications The MFE model is implemented in hybrid simulation, enabling to overcome the problems related to the testing accuracy caused by the numerical substructure simplifications using only macro-level elements. Originality/value This paper is the first to recognise the advantage of the MFE analysis method in hybrid simulation and propose an innovative hybrid simulation technique, combining the MFE analysis method with hybrid simulation method to strike a delicate balance between the accuracy and efficiency of the numerical substructure simulation in hybrid simulation. With the help of the coordinated analysis of FEs at different scales, not only the accuracy and reliability of the overall seismic analysis of the structure is improved, but the computational cost can be restrained to ensure the efficiency of hybrid simulation.

2019 ◽  
Vol 36 (6) ◽  
pp. 1852-1867 ◽  
Author(s):  
Shuang Wang ◽  
Gedong Jiang ◽  
Xuesong Mei ◽  
Chuang Zou ◽  
Xian Zhang ◽  
...  

Purpose Because of the compact structure, short flexspline (FS) harmonic drive (HD) is increasingly used. The stress calculation of FS is very important in design and optimization of HD system. This paper aims to study the stress calculation methods for short FS, based on mechanics analysis and finite element method (FEM). Design/methodology/approach A rapid stress calculation method, based on mechanics analysis, is proposed for the short FS of HD. To verify the stress calculation precision of short FS, a complete finite element model of HD is established. The results of stress and deformation of short FS in different lengths are solved by FEM. Findings Through the rapid calculation method, the analytical relationship between circumferential stress and length of cylinder was obtained. And the circumferential stress has proportional relation with the reciprocal of squared length. The FEM results verified that the rapid stress calculation method could obtain accurate results. Research limitations/implications The rapid mechanics analysis method is practiced to evaluate the strength of FS at the design stage of HD. And the complete model of HD could contribute to improving the accuracy of FEM results. Originality/value The rapid calculation method is developed based on mechanics analysis method of cylinder and equivalent additional bending moment model, through which the analytical relationship between circumferential stress and length of cylinder was obtained. The complete three-dimensional finite element model of HD takes the stiffness of bearing into consideration, which can be used in the numerical simulation in the future work to improve the accuracy.


Sensor Review ◽  
2017 ◽  
Vol 37 (1) ◽  
pp. 26-32
Author(s):  
Hanshan Li

Purpose The purpose of this paper is to evaluate the detection performance of infrared photoelectric detection system and establish stable tracking platform. Design/methodology/approach This paper puts forward making use of the finite element analysis method to set up the infrared radiation characteristics calculation model of flying target in infrared photoelectric detection system; researches the target optical characteristics based on the target imaging detection theory; sets up the heat balance equation of target’s surface node and gives the calculation method of total radiation intensity of flying target; and deduces the target detection distance calculation function; studies the changed regulation of radiation energy that charge coupled device (CCD) gain comes from target surface infrared heat radiations under different sky background luminance and different target flight attitude. Findings Through calculation and experiment analysis, the results show that when the target’s surface area increases or the target flight velocity is higher, the radiation energy that CCD obtained is higher, which is advantageous to the target stable detection in infrared photoelectric detection system. Originality/value This paper uses the finite element analysis method to set up the infrared radiation characteristics calculation model of flying target and give the calculation and experiment results; those results can provide some data and improve the design method of infrared photoelectric detection system, and it is of value.


2016 ◽  
Vol 26 (3/4) ◽  
pp. 1240-1271 ◽  
Author(s):  
Camilo Andrés Bayona Roa ◽  
Joan Baiges ◽  
R Codina

Purpose – The purpose of this paper is to apply the variational multi-scale framework to the finite element approximation of the compressible Navier-Stokes equations written in conservation form. Even though this formulation is relatively well known, some particular features that have been applied with great success in other flow problems are incorporated. Design/methodology/approach – The orthogonal subgrid scales, the non-linear tracking of these subscales, and their time evolution are applied. Moreover, a systematic way to design the matrix of algorithmic parameters from the perspective of a Fourier analysis is given, and the adjoint of the non-linear operator including the volumetric part of the convective term is defined. Because the subgrid stabilization method works in the streamline direction, an anisotropic shock capturing method that keeps the diffusion unaltered in the direction of the streamlines, but modifies the crosswind diffusion is implemented. The artificial shock capturing diffusivity is calculated by using the orthogonal projection onto the finite element space of the gradient of the solution, instead of the common residual definition. Temporal derivatives are integrated in an explicit fashion. Findings – Subsonic and supersonic numerical experiments show that including the orthogonal, dynamic, and the non-linear subscales improve the accuracy of the compressible formulation. The non-linearity introduced by the anisotropic shock capturing method has less effect in the convergence behavior to the steady state. Originality/value – A complete investigation of the stabilized formulation of the compressible problem is addressed.


2019 ◽  
Vol 16 (4) ◽  
pp. 625-645
Author(s):  
Haixu Yang ◽  
Feng Zhu ◽  
Haibiao Wang ◽  
Liang Yu ◽  
Ming Shi

Purpose The purpose of this paper is to describe the structure of nonlinear dampers and the dynamic equations, and nonlinear realization principles and optimize the parameters of nonlinear dampers. Using the finite element method to analyze the seismic performance of the frame structure with shock absorber. Design/methodology/approach The nonlinear shock absorber was installed in a six-storey reinforced concrete frame structure to study its seismic performance. The main structure was designed according to the eight degree seismic fortification intensity, and the time history dynamic analysis was carried out by Abaqus finite element software. EL-Centro, Taft and Wenchuan seismic record were selected to analyze the seismic response of the structure under different magnitudes and different acceleration peaks. Findings Through the principle study and parameter analysis of the nonlinear shock absorber, combined with the finite element simulation results, the shock absorption performance and shock absorption effect of the nonlinear energy sink (NES) nonlinear shock absorber are given as follows: first, the damping of the NES shock absorber is satisfied, and the linear spring stiffness and nonlinear stiffness of the shock absorber are based on the relationship k1=kn×kl2, so that the spring design length is fixed, and the linear stiffness of the shock absorber can be obtained. The nonlinear shock absorber has the characteristics of high rigidity and frequency bandwidth, so that the frequency is infinitely close to the frequency of the main structure, and when the mass of the shock absorber satisfies between 0.056 and 1, a good shock absorption effect can be obtained, and the reinforced concrete with the shock absorber is obtained. The frame structure can effectively reduce the seismic response, increase the natural vibration period of the structure and reduce the damage loss of the structure. Second, the spacer and each additional shock absorber have a small difference in shock absorption effect. After the shock absorber parameters are accurately calculated, the number of installations does not affect the shock absorption effect of the structure. Therefore, the shock absorber is properly constructed and accurately calculated. Parameters can reduce costs. Originality/value New shock absorbers reduce earthquake-induced damage to buildings.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4190
Author(s):  
Jincheng Zheng ◽  
Peiwei Zhang ◽  
Dahai Zhang ◽  
Dong Jiang

A multi-scale fatigue analysis method for braided ceramic matrix composites (CMCs) based on sub-models is developed in this paper. The finite element shape function is used as the interpolation function for transferring the displacement information between the macro-scale and meso-scale models. The fatigue failure criterion based on the shear lag theory is used to implement the coupling calculation of the meso-scale and micro-scale. Combining the meso-scale cell model and the fatigue failure criterion based on the shear lag theory, the fatigue life of 2D SiC/SiC is analyzed. The analysis results are in good agreement with the experimental results, which proves the accuracy of the meso-scale cell model and the fatigue life calculation method. A multi-scale sub-model fatigue analysis method is used to study the fatigue damage of 2D SiC/SiC stiffened plates under random tension–tension loads. The influence of the sub-models at different positions in the macro-model element on the analysis results was analyzed. The results shows that the fatigue analysis method proposed in this paper takes into account the damage condition of the meso-structured of composite material, and at the same time has high calculation efficiency, and has low requirements for modeling of the macro finite element model, which can be better applied to the fatigue analysis of CMCs structure.


Author(s):  
Akihisa Iwasaki ◽  
Shinichiro Matsubara ◽  
Tomohiko Yamamoto ◽  
Seiji Kitamura ◽  
Shigeki Okamura

To design fast reactor (FR) core components, seismic response must be evaluated in order to ensure structural integrity. Therefore, advanced analysis method must be developed to calculate seismic response of a fast reactor core. The fast reactor core is generally made of several hundred core elements which are hexagonal flexible beams embedded at the lower support plate in hexagonal arrangement. When a big earthquake occurs, large horizontal displacement, vertical displacement (rising) and impact force of each core element may cause a trouble for control rod insertability and core element intensity. Therefore, a seismic analysis method of a fast reactor core considering three-dimensional nonlinear behavior, such as impact, fluid-structure interaction, was developed. 1/1.5 scale 37 core element mock-ups hexagonal-matrix experiment was performed to validate the core elements vibration analysis code in three dimensions (REVIAN-3D). Vertical behavior (rising displacement) and horizontal behavior (impact force) were good agreement with experiments by the validation of REVIAN-3D.


2004 ◽  
Vol 41 (1) ◽  
pp. 118-133 ◽  
Author(s):  
Bal Krishna Maheshwari ◽  
Kevin Z Truman ◽  
M Hesham El Naggar ◽  
Phillip L Gould

The effects of material nonlinearity of soil and separation at the soil–pile interface on the dynamic behaviour of a single pile and pile groups are investigated. An advanced plasticity-based soil model, hierarchical single surface (HiSS), is incorporated in the finite element formulation. To simulate radiation effects, proper boundary conditions are used. The model and algorithm are verified with analytical results that are available for elastic and elastoplastic soil models. Analyses are performed for seismic excitation and for the load applied on the pile cap. For seismic analysis, both harmonic and transient excitations are considered. For loading on the pile cap, dynamic stiffness of the soil–pile system is derived and the effect of nonlinearity is investigated. The effects of spacing between piles are investigated, and it was found that the effect of soil nonlinearity on the seismic response is very much dependent on the frequency of excitation. For the loading on a pile cap, the nonlinearity increases the response for most of the frequencies of excitation while decreasing the dynamic stiffness of the soil–pile system.Key words: pile groups, plasticity, separation, dynamic stiffness, seismic response.


2018 ◽  
Vol 24 (1) ◽  
pp. 177-187 ◽  
Author(s):  
Dalia Calneryte ◽  
Rimantas Barauskas ◽  
Daiva Milasiene ◽  
Rytis Maskeliunas ◽  
Audrius Neciunas ◽  
...  

Purpose The purpose of this paper is to investigate the influence of geometrical microstructure of items obtained by applying a three-dimensional (3D) printing technology on their mechanical strength. Design/methodology/approach Three-dimensional printed items (3DPI) are composite structures of complex internal constitution. The buildup of the finite element (FE) computational models of 3DPI is based on a multi-scale approach. At the micro-scale, the FE models of representative volume elements corresponding to different additive layer heights and different thicknesses of extruded fibers are investigated to obtain the equivalent non-linear nominal stress–strain curves. The obtained results are used for the creation of macro-scale FE models, which enable to simulate the overall structural response of 3D printed samples subjected to tensile and bending loads. Findings The validation of the models was performed by comparing the computed results against the experimental ones, where satisfactory agreement has been demonstrated within a marked range of thicknesses of additive layers. Certain inadequacies between computed against experimental results were observed in cases of thinnest and thickest additive layers. The principle explanation of the reasons of inadequacies takes into account the poorer quality of mutual adhesion in case of very thin extruded fibers and too-early solidification effect. Originality/value Flexural and tensile experiments are simulated by FE models that are created with consideration to microstructure of 3D printed samples.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Bao Zhu ◽  
Huan Feng

This paper does some research and discussion on the finite element analysis of a building structure, especially the computer graphics simulation method in building structure simulation. Moreover, with the support of BIM technology and computer finite element simulation technology, this paper constructs a building structure simulation system and analyzes the building structure simulation system based on actual conditions such as building structure and stress load. In addition, this paper improves the traditional structural analysis algorithm and designs experiments to evaluate the effect of the method proposed in this paper and analyze the data in the form of simulation to compare the validity of the test results. Finally, an experiment is designed to evaluate the data processing capability of the test system in this paper. The experimental analysis results verify the effectiveness of the method in this paper, which can provide relevant theoretical references for subsequent building structure simulation.


Author(s):  
Qingqing Ma ◽  
Baoming Ge ◽  
Daqiang Bi ◽  
Fernando J.T.E. Ferreira ◽  
Aníbal T. de Almeida

Purpose – The purpose of this paper is to propose a new three-phase switched reluctance motor (SRM), and achieve high-torque and low-cost. This new SRM's winding configuration uses the double-layer distributed windings, which is different from the conventional SRM's single tooth coils. Design/methodology/approach – The operating principle of new SRM is analyzed, and the voltage equation and the generated torque are deduced. Finite element method (FEM) and finite element circuit coupled method are utilized to evaluate the new motor's operating performances. The two dimensional (2D) frequency response analysis model is employed in the FEM model. Based on the 2D frequency response analysis model, the magnetic field distribution, self-inductance, and mutual-inductance for the new SRM are analyzed in detail. A co-simulation model using FE analysis package and Matlab-Simulink is proposed to simulate the new SRM drive. The simulated and experimental results verify the new SRM. Findings – For the new SRM with double-layer distributed windings, a co-simulation method is proposed to analyze its characteristics. The new SRM presents lower torque ripple coefficient and generates larger torque than the conventional SRM, with three-wire and standard full bridge power converter, rather than six-wire and asymmetric half-bridge converter for conventional SRM. Originality/value – This paper proposes a new SRM with the double-layer distributed windings driven by a standard full bridge inverter. In order to calculate dynamic characteristics of the new SRM, a co-simulation method using FEM and Simulink is proposed to simulate the new SRM drive, where the power inverter and the current chopping control algorithm are implemented.


Sign in / Sign up

Export Citation Format

Share Document