Effects of surface roughness and porous structure on the hydrodynamic lubrication of multi-layer oil bearing

2017 ◽  
Vol 69 (4) ◽  
pp. 455-463 ◽  
Author(s):  
Guotao Zhang ◽  
Yanguo Yin ◽  
Lu Xue ◽  
Guoqian Zhu ◽  
Ming Tian

Purpose The purpose of this paper is to discuss the combined effects of the deterministic surface roughness and porous structure on the lubrication property of the multi-layer bearing. Design/methodology/approach Digital filtering technique and Kozeny-Carman equation are used to simulate the random Gauss surface and the internal pore structure of the porous bearing, respectively. Effects of surface morphology, structure and pores on the lubrication property are discussed by using the finite difference method. Findings Results show that the lubrication performance of the multi-layer bearing increased with the increase of the surface roughness. Also, the transverse surface is better than that of the longitudinal surface. Moreover, lubricating property is getting worse with the increase of the height of each layer and the porosity. The lower permeability surface is beneficial to improve the lubrication performance when the total porosity is certain. Originality/value The effect of the Gauss roughness parameters on the detail of lubrication performance are analysed, such as the migration of the oil film rupture point position, the expansion of the pressure distribution region and the fluctuation of the pressure distribution curve with the roughness parameters. The combined effects of surface roughness, multi-layer structure and the internal pore parameters on the hydrodynamic behaviours of multi-layer porous bearing are analysed. This work is beneficial for the analysis of the tribological property and the structural design of multi-layer bearing.

2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Jian Jin ◽  
Xiaochao Chen ◽  
Yiyang Fu ◽  
Yinhui Chang

Purpose This work aims to explore the combined effects of boundary slip and texturing on hydrodynamic journal bearings and identifies optimized slip and texture patterns to improve the performance of journal bearings. Design/methodology/approach The quadratic programming technique is used to study the influence of boundary slip on the lubrication performance of a two-dimensional journal bearing. A numerical model is used to analyze the effect of the cylindrical texture shape on the characteristics of journal bearings. It is concluded that the combination of slip and texture can be an effective approach to improve the performance of hydrodynamic journal bearings. Findings The results show that there is an interfacial shear stress (perfect slip surface) and that the role of the slip regime is to reduce friction. Numerical analyses indicate that the location and size of the slip and texture zone have a large effect on journal bearings. A comparison of the distribution forms of various texture–slip combinations indicates that the full texture–slip combination can prominently reduce the load-carrying capacity and that the “forward-slip backward-texture” configuration can considerably improve the performance of journal bearings. Originality/value The combined effects of boundary slip and texture on hydrodynamic journal bearings are meticulously examined. The patterns of the slip and texture are optimized, which can substantially improve the journal bearing performance.


2014 ◽  
Vol 66 (3) ◽  
pp. 337-345 ◽  
Author(s):  
Jun Sun ◽  
Xinlong Zhu ◽  
Liang Zhang ◽  
Xianyi Wang ◽  
Chunmei Wang ◽  
...  

Purpose – Current lubrication analyses of misaligned journal bearings were generally performed under some given preconditions. To make the lubrication analysis closer to the actual situation and usable to the journal bearing design, the purpose of this paper was to calculate the lubrication characteristics of misaligned journal bearings considering the viscosity-pressure effect of the oil, the surface roughness and the elastic deformation of the journal bearing at the same time. Design/methodology/approach – The lubrication of bearings was analyzed using the average Reynolds equation. The deformation of the bearing surface under oil film pressure was calculated by a compliance matrix method. The compliance matrix was established by finite element analysis of the bearing housing. The viscosity-pressure and viscosity–temperature equations were used in the analysis. Findings – The oil viscosity-pressure relationship has a significant effect on the lubrication of misaligned journal bearings. The surface roughness will affect the lubrication of misaligned journal bearings when the eccentricity ratio and angle of journal misalignment are all large. The directional parameter of the surface has an obvious effect on the lubrication of misaligned journal bearings. The deformation of the bearing surface has a remarkable effect on the lubrication of misaligned journal bearings. Originality/value – The lubrication characteristics of misaligned journal bearings were calculated considering the viscosity-pressure effect of the oil, the surface roughness and the elastic deformation of the journal bearing at the same time. The results of this paper are helpful to the design of the bearing.


2015 ◽  
Vol 67 (6) ◽  
pp. 564-571 ◽  
Author(s):  
M. Daliri ◽  
D. Jalali-Vahid

Purpose – The purpose of this paper is to investigate squeezing and rotating motions between two rough parallel circular discs lubricated by piezo – viscous couple stress lubricant with pressure-dependent viscosity variation. Design/methodology/approach – Based upon the Stokes couple stress theory, Barus viscosity-pressure dependency relation and Christensen rough surfaces model, squeeze film characteristics between two rough parallel circular discs are obtained. Findings – According to the results, it is found that, the combined effects of couple stresses and viscosity-pressure dependency increases squeeze film performance with respect to the classical Newtonian iso-viscous (constant viscosity) lubricant. However, increasing the rotational inertia parameter reduces squeeze film characteristics. On the other hand, depending on the structure of surface roughness, the squeeze film characteristics can be increased or decreased. Furthermore, results show that the surface roughness with circular pattern increases squeeze film characteristics, while the surface roughness with radial pattern will decrease it. Originality/value – This paper is relatively original and describes the squeeze film characteristics between two parallel circular discs with viscosity-pressure dependency, rotational inertia, couple stresses and surface roughness effects.


2018 ◽  
Vol 70 (1) ◽  
pp. 212-229 ◽  
Author(s):  
Zhenpeng He ◽  
Wenqin Gong ◽  
Weisong Xie ◽  
Guichang Zhang ◽  
Zhenyu Hong

Purpose Piston ring dynamic problem plays an important role in the lubricant characteristics of a reciprocating engine, which lead to engine wear and the increased consumption of lubricating oil. A cavitation analysis of the piston ring lubrication with two-dimensional Reynolds equation has rarely been reported owing to the complex working condition. The purpose of this study is to establish a precise model that can provide guidance for the design of the piston ring. Design/methodology/approach In this paper, a cavitation model and its effect on the piston ring lubrication was studied in a simulation program based on the mass-conserving theory which is solved by means of the Newton–Raphson method. In this study, some models such as mixed lubrication, asperity contact, blow-by/blow-back flow and cavitation have been coupled with the lubrication model. Findings The established model has been compared with the traditional model that deals with cavitation by using the Reynolds boundary condition algorithm. The cavitation zone, pressure distribution and density distribution between the piston ring and the cylinder have also been predicted. Studies of the changing trend for the pressure distribution and the cavitation zone at few typical crank angles have been listed to illustrate the cavitation changing rule. The analysis of the results indicates that the developed simulation model can adequately illustrate the lubrication problem of the piston ring system. All the analyses will provide guidance for the oil film rupture and the reformation process. Originality/value A two-dimensional cavitation model based on the mass-conserving theory has been built. The cavitation-forming and -developing process for the piston ring–liner lubrication has been studied. Non-cavitation occurs in the vicinity of top dead center and bottom dead center. The non-cavitation period will be longer in the vicinity of 360° of crank angle. The density distribution in the cavitation zone can be obtained.


2019 ◽  
Vol 72 (1) ◽  
pp. 109-115
Author(s):  
Guotao Zhang ◽  
Baohong Tong ◽  
Shubao Yang ◽  
Liping Shi ◽  
Yanguo Yin

Purpose The purpose of this paper was to study the hydrodynamic lubrication of rough bilayer porous bearing to reveal the effect of percolation. Design/methodology/approach The seepage lubrication model of the circular bilayer porous bearing was established in polar coordinates. The digital filtering technique and Darcy’s law were used to simulate the rough surface and the percolation characteristic of the oil bearing, respectively. The influence of the structural parameters on the lubrication performance was analyzed. Findings Compared with the ordinary monolayer oil bearing with high porosity, the bilayer bearing can reduce the whole porosity, prevent oil infiltrating into the porous medium and have better lubrication performance. The lubrication performance of bilayer oil bearing is better than that of the single-layer oil bearing which has a higher porosity. With increasing root-mean-square roughness or decreasing surface porosity, the lubrication performance of the bilayer bearing improves. The lower the porosity of the surface layer, the better the lubrication performance. Originality/value This research provides a theoretical basis for clarifying the lubrication mechanism and influence the mechanism of the bilayer oil bearing.


2016 ◽  
Vol 68 (2) ◽  
pp. 183-190 ◽  
Author(s):  
Xingbao Huang ◽  
Youqiang Wang

Purpose – This paper aims to investigate the mechanism of spur gears running-in and to solve the lubrication problems of teeth running-in. Design/methodology/approach – The elastohydrodynamic lubrication (EHL) model considering solid particles was established by applying multi-grid and multiple-grid integration methods to the numerical solution. Findings – In the region where debris settle, transient pressure increases sharply, and a noticeable increase in the running-in load causes a remarkable increase in both the centre and maximum pressures and a slight increase in the minimum film thickness. Roughness wavelength makes a considerable difference to the minimum film thickness at double-to-single tooth transient. A considerable increase in rotation velocity can cause a remarkable reduction in both the centre and maximum pressures but an amazing increase in the minimum film thickness. The effects of roughness amplitude on the maximum pressure are considerably distinct. Research limitations/implications – Research on EHL of spur gears in the running-in process considering solid particles, surface roughness and time-variant effect is meaningful to practical gears running-in. Thermal effect can be included in the next study. Practical implications – The analysis results can be applied to predict and improve lubrication performance of the meshing teeth. Social implications – The aim is to reduce gears’ manufacture and running-in costs and improve economic performance. Originality/value – The EHL model that considers solid particles was established. The Reynolds equation was deduced taking the effects of solid particles into account. The EHL of spur gears running-in was investigated considering the time-variant effect, surface roughness, running-in load and rotation speed.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 900
Author(s):  
Maria Vardaki ◽  
Aida Pantazi ◽  
Ioana Demetrescu ◽  
Marius Enachescu

In this work we present the results of a functional properties assessment via Atomic Force Microscopy (AFM)-based surface morphology, surface roughness, nano-scratch tests and adhesion force maps of TiZr-based nanotubular structures. The nanostructures have been electrochemically prepared in a glycerin + 15 vol.% H2O + 0.2 M NH4F electrolyte. The AFM topography images confirmed the successful preparation of the nanotubular coatings. The Root Mean Square (RMS) and average (Ra) roughness parameters increased after anodizing, while the mean adhesion force value decreased. The prepared nanocoatings exhibited a smaller mean scratch hardness value compared to the un-coated TiZr. However, the mean hardness (H) values of the coatings highlight their potential in having reliable mechanical resistances, which along with the significant increase of the surface roughness parameters, which could help in improving the osseointegration, and also with the important decrease of the mean adhesion force, which could lead to a reduction in bacterial adhesion, are providing the nanostructures with a great potential to be used as a better alternative for Ti implants in dentistry.


2015 ◽  
Vol 67 (2) ◽  
pp. 172-180 ◽  
Author(s):  
Mumin Sahin ◽  
Cenk Misirli ◽  
Dervis Özkan

Purpose – The purpose of this paper is to examine mechanical and metallurgical properties of AlTiN- and TiN-coates high-speed steel (HSS) materials in detail. Design/methodology/approach – In this study, HSS steel parts have been processed through machining and have been coated with AlTiN and TiN on physical vapour deposition workbench at approximately 6,500°C for 4 hours. Tensile strength, fatigue strength, hardness tests for AlTiN- and TiN-coated HSS samples have been performed; moreover, energy dispersive X-ray spectroscopy and X-ray diffraction analysis and microstructure analysis have been made by scanning electron microscopy. The obtained results have been compared with uncoated HSS components. Findings – It was found that tensile strength of TiAlN- and TiN-coated HSS parts is higher than that of uncoated HSS parts. Highest tensile strength has been obtained from TiN-coated HSS parts. Number of cycles for failure of TiAlN- and TiN-coated HSS parts is higher than that for HSS parts. Particularly TiN-coated HSS parts have the most valuable fatigue results. However, surface roughness of fatigue samples may cause notch effect. For this reason, surface roughness of coated HSS parts is compared with that of uncoated ones. While the average surface roughness (Ra) of the uncoated samples was in the range of 0.40 μm, that of the AlTiN- and TiN-coated samples was in the range of 0.60 and 0.80 μm, respectively. Research limitations/implications – It would be interesting to search different coatings for cutting tools. It could be the good idea for future work to concentrate on wear properties of tool materials. Practical implications – The detailed mechanical and metallurgical results can be used to assess the AlTiN and TiN coating applications in HSS materials. Originality/value – This paper provides information on mechanical and metallurgical behaviour of AlTiN- and TiN-coated HSS materials and offers practical help for researchers and scientists working in the coating area.


2011 ◽  
Vol 189-193 ◽  
pp. 1538-1542
Author(s):  
Li Xiao Jia ◽  
Yong Zhen Zhang ◽  
Yong Ping Niu ◽  
San Ming Du ◽  
Jian Li

In order to decrease accidents of slips and falls, COFs of rubber samples with different surface roughness were measured by Brungraber Mark II. And the correlation coefficients between roughness parameters and COF were calculated. The rusults have shown that the COF increases with surface roughness and the correlation coefficient between Sq and COF is highest. In general, almost all the roughness parameters used in the study have high correlation with COF. Parameters had the highest correlation with COF depends on the materials used and test conditions.


Sign in / Sign up

Export Citation Format

Share Document