Tribological properties of carbonized polydopamine/rGO composite coatings

2019 ◽  
Vol 72 (1) ◽  
pp. 54-65
Author(s):  
Ming Yang ◽  
Zhengfeng Jia ◽  
Denghu Wei ◽  
Yunxia Wang ◽  
Xianjuan Pang ◽  
...  

Purpose The purpose of this paper is to investigate the tribological properties of carbonized polydopamine/reduced graphene oxide (CPDA/rGO) composite coatings. Design/methodology/approach CPDA/rGO composite coatings were prepared using the spray technique and subsequent pyrolysis under argon. The transmission electron microscopy, field-emission scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and Raman spectroscopy revealed the conversion of PDA and GO into CPDA and rGO, respectively. Findings The results of tribological investigations show that the CPDA/rGO composite coatings with heat treatment at 300°C possess much better friction-reduction and anti-wear properties. Originality/value The worn surfaces of the PDA/GO composite films after heat treatment at 300°C were much smoother than that of the copper substrate. The tribofilms containing C, N, O and Cu played an important role on reducing friction and increasing wear resistance.

2018 ◽  
Vol 70 (3) ◽  
pp. 512-518 ◽  
Author(s):  
Alaa Mohamed ◽  
Mohamed Hamdy ◽  
Mohamed Bayoumi ◽  
Tarek Osman

Purpose To enhance the tribological properties of nanogrease, one of the new technologies was used to synthesize a nanogrease having carbon nanotubes (CNTs) nanoparticles (NPs) with different concentrations. The microstructures of the synthesized NPs were characterized and evaluated by x-ray diffraction spectroscopy (XRD) and transmission electron microscopy (TEM). Tribological properties of the nanogrease were evaluated using a four-ball tester. The worn surface of four steel balls was investigated by scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDX). Design/methodology/approach Grease was dissolved in chloroform (10 Wt.%), at 25 °C for 1 h. In parallel, functionalized CNTs with different volume concentrations (0.5, 1, 2 and 3 Wt.%) were dispersed in N, N-dimethylformamide. The mixture was stirred for 15 min and then sonicated (40 kHz, 150 W) for 30 min. After that, the mixture was added to the grease solution and magnetically stirred for 15 min and then sonicated for 2 h. Findings The results suggested that CNTs can enhance the antiwear and friction properties of nanogrease at 0.5 Wt.% CNTs to about 57 and 48 per cent, respectively. In addition, the weld load of the base oil containing 0.5 Wt.% CNTs was improved by 17 per cent compared with base grease. Originality/value This work describes the inexpensive and simple fabrication of nanogrease for improving the properties of lubricants, which improve power efficiency and extend lifetimes of mechanical equipment.


2017 ◽  
Vol 1143 ◽  
pp. 26-31
Author(s):  
Lucica Balint ◽  
Gina Genoveva Istrate

Research has shown the relationship among hardness, usage and corrosion resistance Ni-P-Al2O3 composite coatings on steel support heat treated. The electroless strips were heat treated at 200°C, 300°C, 400°C, 500°C and 600°C. Further studies on corrosion, hardness and usage revealed changes in properties, compared to the initial state, both on the strips coated with Ni-P and the ones coated with Ni-P-Al2O3 composite. The samples have been studied before and after the heat treatment via Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Energy Dispersive X-ray Analysis (EDX) and X-Ray Diffraction (XRD). The results show that untreated Ni-P layers exhibit strong corrosion resistance, while hardness and usage increase with heat treatment temperature, with a peak at 400 °C. Using suspended particles co-deposition, led to new types of layers, some with excellent hardness and usage properties. Corrosion resistance increase with heat treatment. Coating layers can be adjusted to the desired characteristics, by selecting proper parameters for the expected specific results.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Jing Wang ◽  
Hongying Mi ◽  
Weigui Zhou ◽  
Xin Yang ◽  
Yan He

Purpose This study aims to the preparation and tribological characteristics of graphene/triangular copper nanoplate composites (abbreviated as GN/Cu nanoplates) as grease additive and clarifies the growth mechanism and tribological mechanism of GN/Cu nanoplates by different analysis methods. In this paper, it is expected to alleviate the problems of easy aggregation and poor dispersion stability of graphene in lubricants and provide theoretical support for the application of graphene and its composites in the tribology field. Design/methodology/approach In this study, the GN/Cu nanoplates have been successfully prepared by the electrostatic self-assembly method. The structural characteristics of GN/Cu nanoplates were analyzed via transmission electron microscopy and X-ray diffraction. Then the tribological properties of GN/Cu nanoplates were investigated under different loads with SRV-IV [Schwingung, Reibung, Verschleiß (German); oscillating, friction, wear (English translation)] tribotester. White-light interferometry was applied to quantify the wear loss of the disk. The element chemical state on worn surfaces was analyzed by an X-ray photoelectron spectroscope to clarify the tribological mechanism of graphene composites. Findings The electrostatic force between the negative charge of graphene and the positive charge of triangular copper nanoplates promotes the self-assembly of GN/Cu nanoplates. With the addition of GN/Cu nanoplates, the wear loss and average friction coefficient under the load of 200 N have been decreased by 72.6% and 18.3%, respectively. It is concluded that the combined action of graphene deposition film and the copper melting film formed on the worn surface could effectively improve the antiwear ability and friction reduction performance of the grease. Originality/value This manuscript fulfills a new approach for the preparation of GN/Cu nanoplates. At the same time, its tribological properties and mechanism as a lubricating additive were studied which provide theoretical support for the application of graphene and its composites in the tribology field.


2017 ◽  
Vol 8 ◽  
pp. 1476-1483 ◽  
Author(s):  
Shende Rashmi Chandrabhan ◽  
Velayudhanpillai Jayan ◽  
Somendra Singh Parihar ◽  
Sundara Ramaprabhu

The present paper describes a facile synthesis method for nitrogen-doped reduced graphene oxide (N-rGO) and the application of N-rGO as an effective additive for improving the tribological properties of base oil. N-rGO has been characterized by different characterization techniques such as X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and Raman spectroscopy. N-rGO-based nanolubricants are prepared and their tribological properties are studied using a four-ball tester. The nanolubricants show excellent stability over a period of six months and a significant decrease in coefficient of friction (25%) for small amounts of N-rGO (3 mg/L). The improvement in tribological properties can be attributed to the sliding mechanism of N-rGO accompanied by the high mechanical strength of graphene. Further, the nanolubricant is prepared at large scale (700 liter) and field trials are carried out at one NTPC thermal plant in India. The implementation of the nanolubricant in an induced draft (ID) fan results in the remarkable decrease in the power consumption.


2015 ◽  
Vol 44 (1) ◽  
pp. 7-12 ◽  
Author(s):  
H.Y. Zhang ◽  
H.J. Niu ◽  
Y.M. Wang ◽  
C. Wang ◽  
X.D. Bai, ◽  
...  

Purpose – The purpose of this paper was to provide a simple method for the preparation of carbon nanotubes (CNTs) by pyrolysing sunflower seed hulls and sago and to evaluate the application of such CNTs in supercapacitors. Design/methodology/approach – The CNTs were obtained by pyrolysing sunflower seed hulls and sago at 800°C. The prepared CNTs were studied by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, cyclic voltammograms, galvanostatic charge and discharge and electrochemical impedance spectra methods. Findings – The CNTs had large surface areas as determined by the methylene blue method and the Brunauer – Emmett – Teller method. And the CNTs that were prepared by pyrolysing the natural sunflower seed hulls (denoted as CNTs-1) and sago (denoted as CNTs-2) had capacitances of 86.9 F/g and 26.7 F/g, respectively. Research limitations/implications – The capacitances of CNTs can be further improved. Practical implications – The exceptional electronic and mechanical properties of CNTs prepared lend the CNTs to diverse applications including electrocatalysts, hydrogen storage, photovoltaic devices actuators, energy storage, field-emitting flat panel displays and composites. Originality/value – Currently, CNTs have not yet been used in the industry at a mass production scale due to high costs associated. The outcomes of the study reported in this article could provide a convenient method in aid of industrialisation of the production of CNTs.


2019 ◽  
Vol 72 (4) ◽  
pp. 515-523
Author(s):  
Maria de Lourdes Miranda-Medina ◽  
Christian Tomastik ◽  
Tia Truglas ◽  
Heiko Groiss ◽  
Martin Jech

Purpose The purpose of this paper is to provide a general picture for describing the formed tribofilm, including chemical and physical aspects in the micro-scale and the nano-scale. In a previous study, the durability of zinc dialkyl dithiophosphate (ZDDP) tribofilms on cylinder liner samples has been investigated in a tribometer model system by using fresh and aged fully formulated oils and replacing them with PAO8 without additives. Analyses of the derived tribofilms by means of X-ray photoelectron spectroscopy and scanning electron microscopy could give some hints about the underlying mechanisms of the tribofilm build-up and wear performance, but a final model has not been achieved. Design/methodology/approach Thus, characterisation of these tribofilms by means of focused ion beam-transmission electron microscopy (FIB-TEM) and energy dispersive X-ray spectroscopy is presented and a concluding model of the underlying mechanisms of tribofilm build-up is discussed in this paper. Findings For tribotests running first with fresh fully formulated engine oil, a rather homogeneous ZDDP-like tribofilm is found underneath a carbon rich tribofilm after changing to non-additivated PAO8. However, when the tests run first with aged fully formulated engine oil, no ZDDP-like tribofilm has been found after changing to non-additivated PAO8, but a wear protective carbon rich tribofilm. Originality/value The obtained results provide insights into the structure and durability of tribofilms. Carbon-based tribofilms are built up on the basis of non-additivated PAO8 because of the previously present ZDDP tribofilms, which suggests an alternative way to reducing the consumption of antiwear additives.


2016 ◽  
Vol 33 (2) ◽  
pp. 68-72 ◽  
Author(s):  
Zhiwei Li

Purpose The purpose of this paper is to seek a surfactant or template-free, simple and green method to fabricate NiO nanobelts and to find an effective technique to detect the ethanol vapor at room temperature. Design/methodology/approach NiO nanobelts with high aspect ratio and dispersive distribution have been synthesized by a template-free hydrothermal reaction at 160°C for 12 h. The products are studied by X-ray diffraction (XRD), energy dispersive spectroscopY, scanning electron microscopy, atomic force microscopy, high-resolution transmission electron microscopy, selective area electron diffractio and X-ray photoelectron spectroscopy. In particular, the room-temperature ethanol sensitivity of NiO nanobelts is investigated by the surface photo voltage (SPV) technique. Findings The prepared NiO nanobelts is single crystalline bunsenite structure with the length of approximately 10 μm and the diameter of approximately 30 nm. The atomic ratio of “Ni” to “O” is 0.92:1. When the concentration of ethanol vapor reaches 100 ppm, the sensitivity of NiO nanobelts is 7, which can meet the commercial demanding of ethanol gas sensor. Originality/value The NiO nanobelts can be obtained by a template-free, simple and green hydrothermal reaction at 160°C for 12 h. The NiO nanobelts-based gas sensor is a promising candidate for the application in ethanol monitoring at room temperature by SPV technique.


2020 ◽  
Vol 72 (7) ◽  
pp. 851-856
Author(s):  
Zhengfeng Cao ◽  
Yanqiu Xia ◽  
Chuan Chen ◽  
Kai Zheng ◽  
Yi Zhang

Purpose This paper aims to explore polyaniline (PANI) as a lubricant additive to improve the anti-corrosion and tribological properties of ionic liquids (ILs) for actual applications. Design/methodology/approach ILs were synthesized by dissolving lithium salts in synthetic oil and were used as a base oil to prepare ILs-based greases. PANI was used as an additive. The tribological properties were investigated in detail and the anti-corrosion ability was also assessed via salt spray test. After friction test, the worn surfaces were characterized by scanning electron microscopy, Raman spectroscopy and X-ray photoelectron spectroscopy to analyze the lubrication mechanisms. Findings PANI not only reduces the corrosion but also improves the friction reduction and anti-wear abilities of the ILs-based greases. The analysis indicates that the protective films generated on the worn surfaces were responsible for the preferable anti-corrosion and tribological properties. Originality/value This paper provides an effective approach to improve the anti-corrosion and tribological properties of ILs for actual applications. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-11-2019-0469/


2003 ◽  
Vol 18 (7) ◽  
pp. 1566-1574 ◽  
Author(s):  
Sheng-Chang Wang ◽  
Wen-Cheng J. Wei

Ultrafine SiC and Al2O3 particles with 30–50 nm sizes were used to codeposit with Ni in a sulfamate bath to form composite coatings. The microstructure and mechanical properties of the layers were investigated by x-ray diffractometry, scanning and transmission electron microscopy, high-resolution transmission electron microscopy, microindentation, and wear testing. The microstructural results revealed that 7 vol% of SiC or Al2O3 particles dispersed randomly in the Ni matrix. The addition of the ultrafine SiC or Al2O3powder into the Ni matrix apparently reduced the size of Ni grains during the electroplating and inhibited the grain growth during heat treatment. The microhardness and wear resistance were improved by the addition of SiC and Al2O3 particles, especially for SiC/Ni samples after heat treatment at 400 °C for 24 h. The mechanisms of hardening and wearing of Ni-based electroplated layers are discussed.


Author(s):  
R. M. Anderson

Aluminum-copper-silicon thin films have been considered as an interconnection metallurgy for integrated circuit applications. Various schemes have been proposed to incorporate small percent-ages of silicon into films that typically contain two to five percent copper. We undertook a study of the total effect of silicon on the aluminum copper film as revealed by transmission electron microscopy, scanning electron microscopy, x-ray diffraction and ion microprobe techniques as a function of the various deposition methods.X-ray investigations noted a change in solid solution concentration as a function of Si content before and after heat-treatment. The amount of solid solution in the Al increased with heat-treatment for films with ≥2% silicon and decreased for films <2% silicon.


Sign in / Sign up

Export Citation Format

Share Document