Template-free fabrication of NiO nanobelts: promising candidate for ethanol gas sensor at room temperature

2016 ◽  
Vol 33 (2) ◽  
pp. 68-72 ◽  
Author(s):  
Zhiwei Li

Purpose The purpose of this paper is to seek a surfactant or template-free, simple and green method to fabricate NiO nanobelts and to find an effective technique to detect the ethanol vapor at room temperature. Design/methodology/approach NiO nanobelts with high aspect ratio and dispersive distribution have been synthesized by a template-free hydrothermal reaction at 160°C for 12 h. The products are studied by X-ray diffraction (XRD), energy dispersive spectroscopY, scanning electron microscopy, atomic force microscopy, high-resolution transmission electron microscopy, selective area electron diffractio and X-ray photoelectron spectroscopy. In particular, the room-temperature ethanol sensitivity of NiO nanobelts is investigated by the surface photo voltage (SPV) technique. Findings The prepared NiO nanobelts is single crystalline bunsenite structure with the length of approximately 10 μm and the diameter of approximately 30 nm. The atomic ratio of “Ni” to “O” is 0.92:1. When the concentration of ethanol vapor reaches 100 ppm, the sensitivity of NiO nanobelts is 7, which can meet the commercial demanding of ethanol gas sensor. Originality/value The NiO nanobelts can be obtained by a template-free, simple and green hydrothermal reaction at 160°C for 12 h. The NiO nanobelts-based gas sensor is a promising candidate for the application in ethanol monitoring at room temperature by SPV technique.

Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 522
Author(s):  
Zhi Yan Lee ◽  
Huzein Fahmi bin Hawari ◽  
Gunawan Witjaksono bin Djaswadi ◽  
Kamarulzaman Kamarudin

A tin oxide (SnO2) and reduced graphene oxide (rGO) hybrid composite gas sensor for high-performance carbon dioxide (CO2) gas detection at room temperature was studied. Since it can be used independently from a heater, it emerges as a promising candidate for reducing the complexity of device circuitry, packaging size, and fabrication cost; furthermore, it favors integration into portable devices with a low energy density battery. In this study, SnO2-rGO was prepared via an in-situ chemical reduction route. Dedicated material characterization techniques including field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), energy dispersive X-ray (EDX) spectroscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS) were conducted. The gas sensor based on the synthesized hybrid composite was successfully tested over a wide range of carbon dioxide concentrations where it exhibited excellent response magnitudes, good linearity, and low detection limit. The synergistic effect can explain the obtained hybrid gas sensor’s prominent sensing properties between SnO2 and rGO that provide excellent charge transport capability and an abundance of sensing sites.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1518
Author(s):  
Minsu Kim ◽  
Dabin Park ◽  
Jooheon Kim

Herein, Sb2Se3 and β-Cu2Se nanowires are synthesized via hydrothermal reaction and water evaporation-induced self-assembly methods, respectively. The successful syntheses and morphologies of the Sb2Se3 and β-Cu2Se nanowires are confirmed via X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, field emission scanning electron microscopy (FE-SEM), and field emission transmission electron microscopy (FE-TEM). Sb2Se3 materials have low electrical conductivity which limits application to the thermoelectric generator. To improve the electrical conductivity of the Sb2Se3 and β-Cu2Se nanowires, polyaniline (PANI) is coated onto the surface and confirmed via Fourier-transform infrared spectroscopy (FT-IR), FE-TEM, and XPS analysis. After coating PANI, the electrical conductivities of Sb2Se3/β-Cu2Se/PANI composites were increased. The thermoelectric performance of the flexible Sb2Se3/β-Cu2Se/PANI films is then measured, and the 70%-Sb2Se3/30%-β-Cu2Se/PANI film is shown to provide the highest power factor of 181.61 μW/m·K2 at 473 K. In addition, a thermoelectric generator consisting of five legs of the 70%-Sb2Se3/30%-β-Cu2Se/PANI film is constructed and shown to provide an open-circuit voltage of 7.9 mV and an output power of 80.1 nW at ΔT = 30 K. This study demonstrates that the combination of inorganic thermoelectric materials and flexible polymers can generate power in wearable or portable devices.


2002 ◽  
Vol 16 (06n07) ◽  
pp. 1047-1051
Author(s):  
JIANPING MA ◽  
ZHIMING CHEN ◽  
GANG LU ◽  
MINGBIN YU ◽  
LIANMAO HANG ◽  
...  

Intense photoluminescence (PL) has been observed at room temperature from the polycrystalline SiC samples prepared from carbon-saturated Si melt at a temperature ranging from 1500 to 1650°C. Composition and structure of the samples have been confirmed by means of X-ray photoelectron spectroscopy, X-ray diffraction and scanning electron microscopy. PL measurements with 325 nm UV light excitation revealed that the room temperature PL spectrum of the samples consists of 3 luminescent bands, the peak energies of which are 2.38 eV, 2.77 eV and 3.06 eV, respectively. The 2.38 eV band is much stronger than the others. It is suggested that some extrinsic PL mechanisms associated with defect or interface states would be responsible to the intensive PL observed at room temperature.


1996 ◽  
Vol 457 ◽  
Author(s):  
I. Coulthard ◽  
T. K. Sham

ABSTRACTApart from its well known ability to luminesce very intensely at room temperature in the visible range, porous silicon is also an effective reducing agent. We report the formation of several noble metal (Pd, Ag, Au, Pt) nanostructures by reductive dispersion of metal ions from aqueous solutions onto the surface of porous silicon. The nanophase systems produced by reductive deposition vary with the element deposited and the metallic salt utilized in the process. The resulting nanophase systems were studied using a variety of techniques including: scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and spectroscopie methods using synchrotron radiation.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Anukorn Phuruangrat ◽  
Nuengruethai Ekthammathat ◽  
Budsabong Kuntalue ◽  
Phattranit Dumrongrojthanath ◽  
Somchai Thongtem ◽  
...  

Undoped and Ce doped Bi2MoO6samples were synthesized by hydrothermal reaction at 180°C for 20 h. Phase, morphology, atomic vibration, and optical properties were characterized by X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectrophotometry, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), and UV-visible spectroscopy. In this research, the products were orthorhombic Bi2MoO6nanoplates with the growth direction along the [0b0], including the asymmetric and symmetric stretching and bending modes of Bi–O and Mo–O. Undoped and Ce doped Bi2MoO6samples show a strong absorption in the UV region.


2005 ◽  
Vol 83 (8) ◽  
pp. 1093-1097 ◽  
Author(s):  
Qingrui Zhao ◽  
Xuanjun Zhang ◽  
Qing Yang ◽  
Yi Xie

A direct and simple surfactant- and template-free route has been developed for the controlled synthesis of Sb2O3 belt-like microstructures. By adjusting the reactant ratio between SbCl3 and urea under solvothermal reaction conditions, broom-like belts and rods of Sb2O3 have been successfully prepared. X-ray powder diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), and X-ray photoelectron spectroscopy (XPS) has been used to characterize the phases and morphologies of the as-prepared products. A possible formation mechanism is also discussed.Key words: antimony trioxide, solvothermal synthesis, broom-like belts.


Nanomaterials ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 445 ◽  
Author(s):  
Xiangfeng Guan ◽  
Yongjing Wang ◽  
Peihui Luo ◽  
Yunlong Yu ◽  
Dagui Chen ◽  
...  

The development of high-performance acetone gas sensor is of great significance for environmental protection and personal safety. SnO2 has been intensively applied in chemical sensing areas, because of its low cost, high mobility of electrons, and good chemical stability. Herein, we incorporated nitrogen atoms into the SnO2 nanostructure by simple solvothermal and subsequent calcination to improve gas sensing property for acetone. The crystallization, morphology, element composition, and microstructure of as-prepared products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Electron paramagnetic resonance (EPR), Raman spectroscopy, UV–visible diffuse reflectance spectroscopy (UV–vis DRS), and the Brunauer–Emmett–Teller (BET) method. It has been found that N-incorporating resulted in decreased crystallite size, reduced band-gap width, increased surface oxygen vacancies, enlarged surface area, and narrowed pore size distribution. When evaluated as gas sensor, nitrogen-incorporated SnO2 nanostructure exhibited excellent sensitivity for acetone gas at the optimal operating temperature of 300 °C with high sensor response (Rair/Rgas − 1 = 357) and low limit of detection (7 ppb). The nitrogen-incorporated SnO2 gas sensor shows a good selectivity to acetone in the interfering gases of benzene, toluene, ethylbenzene, hydrogen, and methane. Furthermore, the possible gas-sensing mechanism of N-incorporated SnO2 toward acetone has been carefully discussed.


2018 ◽  
Vol 5 (1) ◽  
pp. 171768 ◽  
Author(s):  
Xuyang Jing ◽  
Cong Wang ◽  
Wenjing Feng ◽  
Na Xing ◽  
Hanmei Jiang ◽  
...  

Hierarchical VOOH hollow spheres with low crystallinity composed of nanoparticles were prepared by a facile and template-free method, which involved a precipitation of precursor microspheres in aqueous solution at room temperature and subsequent hydrothermal reaction. Quasi-solid-state symmetric and asymmetric supercapacitor (SSC and ASC) devices were fabricated using hierarchical VOOH hollow spheres as the electrodes, and the electrochemical properties of the VOOH//VOOH SSC device and the VOOH//AC ASC device were studied by cyclic voltammetry (CV), galvanostatic charge–discharge (GCD) and electrochemical impedance spectroscopy (EIS). Results demonstrated that the electrochemical performance of the VOOH//AC ASC device was better than that of the VOOH//VOOH SSC device. After 3000 cycles, the specific capacitance of the VOOH//AC ASC device retains 83% of the initial capacitance, while the VOOH//VOOH SSC device retains only 7.7%. Findings in this work proved that hierarchical VOOH hollow spheres could be a promising candidate as an ideal electrode material for supercapacitor devices.


2015 ◽  
Vol 44 (1) ◽  
pp. 7-12 ◽  
Author(s):  
H.Y. Zhang ◽  
H.J. Niu ◽  
Y.M. Wang ◽  
C. Wang ◽  
X.D. Bai, ◽  
...  

Purpose – The purpose of this paper was to provide a simple method for the preparation of carbon nanotubes (CNTs) by pyrolysing sunflower seed hulls and sago and to evaluate the application of such CNTs in supercapacitors. Design/methodology/approach – The CNTs were obtained by pyrolysing sunflower seed hulls and sago at 800°C. The prepared CNTs were studied by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, cyclic voltammograms, galvanostatic charge and discharge and electrochemical impedance spectra methods. Findings – The CNTs had large surface areas as determined by the methylene blue method and the Brunauer – Emmett – Teller method. And the CNTs that were prepared by pyrolysing the natural sunflower seed hulls (denoted as CNTs-1) and sago (denoted as CNTs-2) had capacitances of 86.9 F/g and 26.7 F/g, respectively. Research limitations/implications – The capacitances of CNTs can be further improved. Practical implications – The exceptional electronic and mechanical properties of CNTs prepared lend the CNTs to diverse applications including electrocatalysts, hydrogen storage, photovoltaic devices actuators, energy storage, field-emitting flat panel displays and composites. Originality/value – Currently, CNTs have not yet been used in the industry at a mass production scale due to high costs associated. The outcomes of the study reported in this article could provide a convenient method in aid of industrialisation of the production of CNTs.


2019 ◽  
Vol 61 (11) ◽  
pp. 2240
Author(s):  
Ю.А. Стенькин ◽  
В.В. Болотов ◽  
Д.В. Соколов ◽  
В.Е. Росликов ◽  
К.Е. Ивлев

Nanocomposites based on multiwalled carbon nanotubes (MWCNT) with manganese dioxide (MnO2-x) and copper oxide (CuO) were obtained and investigated. The morphology and elemental composition of MWCNT-layer and nanocomposites MWCNT/MnO2-х, MWCNT/MnO2-х/CuO were studied by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The gas sensing response of MWCNT-layer and nanocomposites upon exposure to hydrogen sulfide (H2S) and nitrogen dioxide (NO2) was demonstrated at room temperature. Effect of increasing the conductivity of MWCNT-layer and nanocomposites upon exposure to NO2 indicates these nanomaterials have conductive of p-type. Copper oxide in nanocomposite significantly enhances the gas sensing response to H2S.


Sign in / Sign up

Export Citation Format

Share Document