Effects of heat and mass transfer on the peristaltic motion of Sutterby fluid in an inclined channel

2020 ◽  
Vol 16 (6) ◽  
pp. 1357-1372 ◽  
Author(s):  
Faseeha Atlas ◽  
Maryiam Javed ◽  
Naveed Imran

PurposeThe purpose of this paper is to study the peristaltic mechanism of Sutterby fluid in a symmetric channel with mass and heat transfer.Design/methodology/approachMass and heat transfer are investigated in the assumption of Reynolds number and the long wavelength. The velocity, temperature and concentration terms for small values of Sutterby fluid parameter are achieved.FindingsGraphical results have been introduced for various important parameters. The effects of emerging key parameters are also highlighted.Originality/valueSutterby fluid model is one that represents the high polymer aqueous solutions. It is now strongly believed that any diseased part of the body would be cured better when exposed to magnetic force when compared with a drug. Peristalsis with mass and heat transfer occurs in treatment to destroy the unwanted tissues, hemodialysis and oxygenation process, etc.

Author(s):  
U. P. Singh ◽  
Amit Medhavi ◽  
R. S. Gupta ◽  
Siddharth Shankar Bhatt

The present investigation is concerned with the problem of heat transfer and peristaltic flow of non-Newtonian fluid using Rabinowitsch fluid model through a channel under long wavelength and low Reynolds number approximation. Expressions for velocity, pressure gradient, pressure rise, friction force and temperature have been obtained. The effect of different parameters on velocity, pressure gradient, pressure rise, streamlines, friction force and temperature have been discussed through graphs.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Qingkai Zhao ◽  
Hang Xu ◽  
Longbin Tao

Purpose The purpose of this paper is to investigate the immiscible two-layer heat fluid flows in the presence of the electric double layer (EDL) and magnetic field. The effects of EDL, magnetic field and the viscous dissipative term on fluid velocity and temperature, as well as the important physical quantities, are examined and discussed. Design/methodology/approach The upper and lower regions in a horizontal microchannel with one layer being filled with a nanofluid and the other with a viscous Newtonian fluid. The nanofluid flow in the lower layer is described by the Buongiorno’s nanofluid model with passively controlled model at the boundaries. An appropriate set of non-dimensional quantities are used to simplify the nonlinear systems. The resulting coupled nonlinear equations are solved by using homotopy analysis method. Findings The present work demonstrates that increasing the EDL thickness and Hartmann number can restrain the fluid flow. The Brinkmann number has a significant role in the enhancement of heat transfer. It is also identified that the influence of EDL effects on microflow cannot be ignored. Originality/value The effects of viscous dissipation involved in the heat transfer process and the body force because of the EDL and the magnetic field are considered in the thermal energy and momentum equations for both regions. The detailed derivation procedure of the analytical solution for electrostatic potential is provided. The analytical solutions can lead to improved understanding of the complex microfluidic systems.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Maryiam Javed

Purposeobjective of the present investigation is to examine the influence of Hall on the peristaltic mechanism of Johnson-Segalman fluid in a heated channel with elastic walls. The transmission of heat is carried out. Relevant equations are computed for heat transfer coefficient, temperature and velocity. Low Reynolds number assumptions and long wavelength are employed. The interpretation of various parameters is analyzed. The results indicate that the heat transfer coefficient, temperature and velocity are larger for viscous material in comparison with Johnson-Segalman material.Design/methodology/approachThe transmission of heat is carried out. Relevant equations are computed for heat transfer coefficient, temperature and velocity. Low Reynolds number assumptions and long wavelength are employed. The interpretation of various parameters is analyzed. The results indicate that the heat transfer coefficient, temperature and velocity are larger for viscous material in comparison with Johnson-Segalman material.FindingsThe formulation of paper is executed as follows. Section 2 comprises problem summary and mathematical design. Solution methodology is discussed, and expressions for temperature, velocity and coefficient of heat transfer are derived in Section 3. Graphical outcomes for the parameters are reported in Section 4. Conclusions are outlined in Section 5.Practical implicationsPeristaltic phenomenon of fluids has a definite role in many physiological, industrial and engineering processes. The mechanical devices for instance finger and roller pumps operate via this process, and it is quite significant for vasomotion of blood vessels, consumption of food via esophagus, chyme flow in gastrointestinal zone, toxic liquid flow in nuclear industry and transport of corrosive fluids.Originality/valueLiterature review witnesses that information about peristalsis of conducting fluid in a heated channel with flexible walls and Hall effect is scarce. So, our goal is to discuss the peristaltic activity of non-Newtonian fluids in flexible channel. Johnson-Segalman fluid is taken into account. This model is used to allow non-affine deformations. Experimentalists relate “spurt” with wall slip. That is why the work presented is original.


2014 ◽  
Vol 24 (5) ◽  
pp. 1044-1056
Author(s):  
Shahzada Zaman Shuja ◽  
Bekir Yilbas

Purpose – The heat transfer rates from the body to the working fluid can be improved through altering geometric configurations of the body and its arrangement in the flow system. One of the arrangements for this purpose is to locate the body at the channel inlet while the convection current opposes it. Since the flow field in the channel inlet influences the heat transfer rates, changing the aspect ratio and inclination of the body is expected to modify the flow field while enhancing the heat transfer rates. Consequently, investigation into the influence of the aspect ratios and tilting angles of the body on the heat transfer rates in the channel flow becomes essential. The paper aims to discuss these issues. Design/methodology/approach – Numerical simulation of flow in a channel with the presence of solid block is carried out. The block aspect ratio is changed while keeping the area of the block constant for all aspect ratios. The tilting angle is also incorporated analysis to examine its effect on the Nusselt number. Findings – The throttling effect of the block at channel inlet accelerates the flow between the channel wall and the block faces. This, in turn modifies the thermal boundary layer around the block. In this case, heat transfer rates increase considerably at the block faces where the flow acceleration suppresses the thermal boundary layer thickness. This is more pronounced for large block tilting angles. The Nusselt number attains low values for the block face opposing to the flow at the channel inlet and the back face of the block. This is attributed to the mixing of the thermal current emanating from the side faces of the block in the region close to the back surface. In this case, thermal boundary layer thickens and the heat transfer rates from the block reduce significantly. The Nusselt number improves with reducing the block aspect ratio, which is particularly true along the side faces of the block. In addition, the influence of the block tilting angle on the Nusselt number is considerable for the low block aspect ratios. Research limitations/implications – The model study is validated with the previous studies for the drag coefficient. The study covers all the aspects of the flow situations and discusses the resulting fluid field and the heat transfer rates from the block. Practical implications – It is an interesting work for cooling applications. The block aspect ratio and its tilting angle in the channel influence considerably the flow field and the Nusselt number variation around the block faces. Social implications – The cooling technology may be improved through implementing the findings of the current work. Originality/value – It is an original work and it has never been submitted to other journals.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Sayed Mahdi Naghavi ◽  
Ghanbar Ali Sheikhzadeh

Purpose The purpose of this study is the identification of the best method to apply the body force in the lattice Boltzmann method (LBM). In the simulation of mixed convection, especially for large Richardson number flows in a square cavity. Design/methodology/approach First, three methods for applying the body force were compared to each other in the LBM. Then, an LBM-based code was written in the FORTRAN language using these three methods. Next, that code was used to simulate natural/mixed convection in a two-dimensional cavity to evaluate the methods for applying the body force. Finally, the optimum way for applying the body force was used for the simulation of free convection heat transfer in a concentric annulus with Rayleigh number in a range of 1,000 to 50,000, and mixed convection heat transfer in a concentric annulus with Rayleigh number in a range of 10,000 to 50,000 and Reynolds number in a range of 100 to 400. Findings Mixed convection heat transfer was simulated in a two-dimensional cavity with Richardson number in a range of 0.0001 to 100. The results which were obtained in low Richardson number flows have shown good adaptation to the available data. However, the results of large Richardson number flows, for example, Ri = 100, have shown a significant difference to the available data. Investigations revealed that this difference was due to the method of applying the body force. Therefore, the choice of the best way to apply the body force was investigated. Finally, for the large Richardson number flows, the best method to apply the body force has been identified among the several techniques. Originality/value To the authors’ knowledge, the effects of methods for applying the body force were not investigated in the cavities mixed convection, even though there are numerous investigations conducted on mixed convection with the LBM. In this study, the effects of techniques to apply the body force were investigated in large Richardson number flows. Finally, the best method to apply the body force is distinguished between several techniques for the large Richardson number mixed convection flows.


2015 ◽  
Vol 08 (02) ◽  
pp. 1550026 ◽  
Author(s):  
Noreen Sher Akbar ◽  
Z. H. Khan

The impulsion system of cilia motion is deliberated by biviscosity fluid model. The problem of two-dimensional motion of biviscosity fluid privileged in a symmetric channel with ciliated walls is considered. The features of ciliary structures are resolute by the supremacy of viscous effects above inertial possessions by the long-wavelength and low Reynolds approximation. Closed-form solutions for the longitudinal pressure gradient, temperature and velocities are obtained. The pressure gradient and volume flow rate for different values of the biviscosity are also premeditated. The flow possessions for the biviscosity fluid resolute as a function of the cilia and metachronal wave velocity.


2013 ◽  
Vol 68 (5) ◽  
pp. 380-390 ◽  
Author(s):  
Saima Noreen ◽  
Tasawar Hayat ◽  
Ahmed Alsaedi

A mathematical model is developed to examine the effects of an induced magnetic field on the peristaltic flow in a curved channel. The non-Newtonian pseudoplastic fluid model is used to depict the combined elastic and viscous properties. The analysis has been carried out in the wave frame of reference, long wavelength and low Reynolds scheme are implemented. A series solution is obtained through perturbation analysis. Results for stream function, pressure gradient, magnetic force function, induced magnetic field, and current density are constructed. The effects of significant parameters on the flow quantities are sketched and discussed.


2020 ◽  
Vol 25 (3) ◽  
pp. 52
Author(s):  
Naveed Iqbal ◽  
Humaira Yasmin ◽  
Bawfeh K. Kometa ◽  
Adel A. Attiya

This article deals with Sisko fluid flow exhibiting peristaltic mechanism in an asymmetric channel with sinusoidal wave propagating down its walls. The channel walls in heat transfer process satisfy the convective conditions. The flow and heat transfer equations are modeled and non-dimensionalized. Analysis has been carried out subject to low Reynolds number and long wavelength considerations. Analytical solution is obtained by using the regular perturbation method by taking Sisko fluid parameter as a perturbed parameter. The shear-thickening and shear-thinning properties of Sisko fluid in the present nonlinear analysis are examined. Comparison is provided between Sisko fluid outcomes and viscous fluids. Velocity and temperature distributions, pressure gradient and streamline pattern are addressed with respect to different parameters of interest. Trapping and pumping processes have also been studied. As a result, the thermal analysis indicates that the implementation of a rise in a non-Newtonian parameter, the Biot numbers and Brinkman number increases the thermal stability of the liquid.


2013 ◽  
Vol 10 (4) ◽  
pp. 197-208 ◽  
Author(s):  
A. Alsaedi ◽  
Naheed Batool ◽  
H. Yasmin ◽  
T. Hayat

The effects of magnetohydrodynamic (MHD) on peristaltic transport of Prandtl fluid in a symmetric channel have been studied under the assumptions of long wave length and low-Reynolds number. Channel walls are considered compliant in nature. Series solutions of axial velocity, stream function and temperature are given by using regular perturbation technique for small values of Prandtl fluid parameter. The effects of physical parameters on the velocity, streamlines and temperature are examined by plotting graphs.


Sign in / Sign up

Export Citation Format

Share Document