A DNA hybridization detection sensor based on photo biased ZnO thin film FET devices

Sensor Review ◽  
2016 ◽  
Vol 36 (4) ◽  
pp. 368-376
Author(s):  
Mehdi Habibi ◽  
Maryam Fanaei

Purpose The purpose of this paper is to present a DNA hybridization detection sensor. An inexpensive fabrication procedure was used so that the sensors can be disposed economically after the measurement is completed. Design/methodology/approach Field effect transistor (FET) devices are used in the proposed structure. The FET device acts as a charge detection element and produces an amplified output current based on surface charge variations. As amplification is performed directly at the sensor frontend, noise sources have less effect on the detected signal, and thus, acceptably low DNA concentrations can be detected with simple external electronics. ZnO nano layers are used as the FET active semiconductor channel. Furthermore, a photobiasing approach is used to adjust the operating point of the proposed FET without the need for an additional gate terminal. Findings The proposed sensor is evaluated by applying matched and unmatched target DNA fragments on the fabricated sensors with capture probes assembled either directly on the ZnO surface or on a nano-platinum linker layer. It is observed that the presented approach can successfully detect DNA hybridization at the nano mole range with no need for complex laboratory measurement devices. Originality/value The presented photobiasing approach is effective in the adjustment of the sensor sensitivity and decreases the fabrication complexity of the achieved sensor compared with previous works.

2019 ◽  
Vol 30 (18) ◽  
pp. 184002 ◽  
Author(s):  
Ganesh Jayakumar ◽  
Maxime Legallais ◽  
Per-Erik Hellström ◽  
Mireille Mouis ◽  
Isabelle Pignot-Paintrand ◽  
...  

2021 ◽  
Author(s):  
Esmaeel Alipour ◽  
Sheida Norouzi ◽  
Shokoufe Moradi

Electrochemical DNA biosensor is designed for detection of specific target DNA after hybridization with complementary probe DNA immobilized onto glassy carbon electrode surface. Quercetin was successfully used as a new...


2002 ◽  
Vol 735 ◽  
Author(s):  
H. Y. Lee ◽  
J. W. Park ◽  
Y. S. Choi ◽  
T. Kannno ◽  
Hiro. Tanaka ◽  
...  

Our system is the electrochemical approaches include the detection of hybridization from nonlabeling nucleic acids to protein-bound nucleic acids using soluble mediators with K4Fe(CN)6 solutions. In order to generate bio-functional surfaces, the streptavidin(SAv)-biotin system is used. A 50 % change of redox peak current after hybridization measured with 50 μM concentration of target DNA. We suggest that this result comes from the efficient electron transport through the SAv-biotin interaction. Our electrochemical detection system showed good reproducibility on a chip with non-labeling DNA hybridization detection.


2002 ◽  
Vol 761 ◽  
Author(s):  
H. Y. Lee ◽  
J. W. Park ◽  
Y. S. Choi ◽  
T. Kannno ◽  
Hiro. Tanaka ◽  
...  

Our system is the electrochemical approaches include the detection of hybridization from nonlabeling nucleic acids to protein-bound nucleic acids using soluble mediators with K4Fe(CN)6 solutions. In order to generate bio-functional surfaces, the streptavidin(SAv)-biotin system is used. A 50 % change of redox peak current after hybridization measured with 50 ?M concentration of target DNA. We suggest that this result comes from the efficient electron transport through the SAv-biotin interaction. Our electrochemical detection system showed good reproducibility on a chip with non-labeling DNA hybridization detection.


2016 ◽  
Vol 55 (3) ◽  
pp. 844-858 ◽  
Author(s):  
Per Sikora ◽  
Sofia Andersson ◽  
Jadwiga Winiecka-Krusnell ◽  
Björn Hallström ◽  
Cecilia Alsmark ◽  
...  

ABSTRACTIn order to improve genotyping and epidemiological analysis ofCryptosporidiumspp., genomic data need to be generated directly from a broad range of clinical specimens. Utilizing a robust method that we developed for the purification and generation of amplified target DNA, we present its application for the successful isolation and whole-genome sequencing of 14 differentCryptosporidium hominispatient specimens. Six isolates of subtype IbA10G2 were analyzed together with a single representative each of 8 other subtypes: IaA20R3, IaA23R3, IbA9G3, IbA13G3, IdA14, IeA11G3T3, IfA12G1, and IkA18G1. Parasite burden was measured over a range of more than 2 orders of magnitude for all samples, while the genomes were sequenced to mean depths of between 17× and 490× coverage. Sequence homology-based functional annotation identified several genes of interest, including the gene encodingCryptosporidiumoocyst wall protein 9 (COWP9), which presented a predicted loss-of-function mutation in all the sequence subtypes, except for that seen with IbA10G2, which has a sequence identical to theCryptosporidium parvumreference Iowa II sequence. Furthermore, phylogenetic analysis showed that all the IbA10G2 genomes form a monophyletic clade in theC. hoministree as expected and yet display some heterogeneity within the IbA10G2 subtype. The current report validates the aforementioned method for isolating and sequencingCryptosporidiumdirectly from clinical stool samples. In addition, the analysis demonstrates the potential in mining data generated from sequencing multiple whole genomes ofCryptosporidiumfrom human fecal samples, while alluding to the potential for a higher degree of genotyping withinCryptosporidiumepidemiology.


2012 ◽  
Vol 62 (Pt_9) ◽  
pp. 2133-2139 ◽  
Author(s):  
S. Shivaji ◽  
P. Vishnu Vardhan Reddy ◽  
S. S. S. Nageshwara Rao ◽  
Zareena Begum ◽  
Poorna Manasa ◽  
...  

A novel Gram-stain-negative, horseshoe-shaped, non-motile bacterium, designated strain M12-11BT, was isolated from a marine sediment sample collected at a depth of 200 m from Kongsfjorden, Svalbard. The colony colour was orangish red due to the presence of carotenoids. Fatty acids were dominated by branched and unsaturated fatty acids (90.8 %), with a high abundance of iso-C15 : 0 (14.9 %), anteiso-C15 : 0 (11.4 %), iso-C15 : 1 G (13.1 %), C15 : 1ω6c (5.4 %), C17 : 1ω6c (6.7 %), summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c; 9.3 %) and summed feature 9 (10-methyl C16 : 0 and/or iso-C17 : 1ω9c; 5.9 %). Strain M12-11BT contained MK-7 as the major respiratory quinone. The polar lipids consisted of phosphatidylcholine, phosphatidylethanolamine, one unidentified aminolipid and three unidentified lipids. Based on 16S rRNA gene sequence similarities, the type strains of Cyclobacterium amurskyense , Cyclobacterium marinum and Cyclobacterium lianum were most closely related to M12-11BT with sequence similarities of 98.2, 96.8 and 93.3 %, respectively. Other members of the family Cyclobacteriaceae had sequence similarities of <92.0 %. However, DNA–DNA hybridization with Cyclobacterium amurskyense KCTC 12363T and Cyclobacterium marinum DSM 745T showed relatedness values of only 24.5 and 32.5 % with respect to strain M12-11BT. Based on the results of DNA–DNA hybridization experiments and phenotypic and chemotaxonomic data, it appears that strain M12-11BT represents a novel species of the genus Cyclobacterium , for which the name Cyclobacterium qasimii sp. nov. is proposed; the type strain is M12-11BT ( = KCTC 23011T = NBRC 106168T) and it has a DNA G+C content of 40.5 mol%.


Langmuir ◽  
2018 ◽  
Vol 34 (49) ◽  
pp. 14817-14824 ◽  
Author(s):  
Leila Zarei ◽  
Roya Tavallaie ◽  
Moinul H. Choudhury ◽  
Stephen G. Parker ◽  
Padmavathy Bakthavathsalam ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document