Compositional and experimental investigation of the effect of reactor temperature on softwood and hardwood pyrolysis

2018 ◽  
Vol 15 (1) ◽  
pp. 21-26
Author(s):  
Joseph Adewumi Oyebanji ◽  
Sunday Olayinka Oyedepo

Purpose This study aims to investigate the effect of reactor temperature on softwood and hardwood pyrolysis. Experiments are performed at six temperature levels ranging from 300 to 800°C under N2 atmosphere. The weights of char, tar and gas yields produced were measured and recorded in percentage of initial weight of the pyrolyzed samples. Results of the study showed that hardwood produces maximum char, tar and gas yields of 41.02 per cent at 300°C,44.10 per cent at 300°C and 56.86 per cent at 800°C, respectively, whereas softwood produces maximum yields of 30.10 per cent at 300°C, 28.25 per cent at 300°C and 68.73 per cent at 800°C, respectively. Proximate analysis shows that volatile matter, fixed carbon, ash content and moisture content of hardwood are 74.83, 14.28, 2.81 and 8.08 per cent, respectively, and that of softwood are 79.76, 12.65, 0.98 and 6.61 per cent, respectively. Result of the elemental analysis results shows that the carbon, hydrogen, nitrogen, oxygen and sulphur contents for hardwood are 52.20, 6.45, 0.68, 39.64 and 1.03 per cent, respectively, and that of softwood are 45.95, 4.57, 0.56, 48.13 and 0.79 per cent, respectively. The higher heating value of hardwood and softwood are 21.76 and 16.50 kJ/g respectively. This study shows that char and tar yields decrease with increase pyrolysis temperature, whereas gas yield increases as pyrolysis temperature increases for the wood samples considered. At all temperatures considered in this study, gas yields are higher than tar and char yields for softwood, whereas for hardwood, tar yield decreases with increase in temperature with accompanying increase in gas yield. Design/methodology/approach Experiments are performed at six temperature levels ranging from 300 to 800°C under N2 atmosphere. Findings At all temperatures considered in this study, gas yields are higher than tar and char yields for softwood, whereas for hardwood, tar yield decreases with increase in temperature with accompanying increase in gas yield. Originality/value Results of the study showed that hardwood produces maximum char, tar and gas yields of 41.02 per cent at 300°C,44.10 per cent at 300°C and 56.86 per cent at 800°C, respectively, whereas softwood produces maximum yields of 30.10 per cent at 300°C, 28.25 per cent at 300°C and 68.73 per cent at 800°C, respectively.

2013 ◽  
Vol 39 (2) ◽  
pp. 141-150 ◽  
Author(s):  
Michał Wichliński ◽  
Rafał Kobyłecki ◽  
Zbigniew Bis

Abstract This paper presents the results of the investigation associated with the determination of mercury content in Polish hard coal and lignite samples. Those coals are major fuels used for electricity generation in Poland. The results indicated that the average content of mercury in the coal samples was roughly about 100 ng/g. Apart from the determination of the mercury contents a detailed ultimate and proximate analysis of the coal samples was also carried out. The relationships between the mercury content and ash, as well as fixed carbon, volatile matter, sulfur, and high heating value of the coal samples were also established. Furthermore, the effect of coal enrichment was also investigated, and it was found that the enrichment process enabled the removal of up to 75% of the coal mercury from the samples.


Author(s):  
J. M. Makavana ◽  
P. N. Sarsavadia ◽  
P. M. Chauhan

Bio-char is carbon-rich product generated from biomass through batch type slow pyrolysis. In this study, the effects of pyrolysis temperature and residence time on the yield and properties of bio-chars obtained from shredded cotton stalks were investigated. Safely said that the quality of bio-char of shredded cotton stalk obtained at 500°C temperature and 240 min is best out of the all experimental levels of variables of temperature and residence time. At this temperature and residence time, the quality of bio-char in terms higher heating value (8101.3cal /g or 33.89 MJ/kg), nitrogen (1.56%), Carbon (79.30%), and C/N ratio (50.83) respectively. The quality of bio-char for various applications is discussed along with different quality parameters. The bio-char could be used for the production of activated carbon, in fuel applications, and water purification processes. Average bulk density of whole cotton stalk and shredded cotton stalk was found as 29.90 kg/m3 and 147.02 kg/m3 respectively. Thus density was increased by 3.91 times. The value of pH, EC and CEC of shredded cotton stalk biomass was found as 5.59, 0.03 dS/m and 38.84 cmol/kg respectively. Minimum and maximum values pH, EC and CEC of its bio-char was found as 5.85 to9.86, 0.04 to 0.10 dS/m and 38.02 to 24.39 cmol/kg at 200°C and 60 min and; 500°C and 240 min temperature and residence time respectively. Moisture content, ash content, volatile matter and fixed carbon of shredded cotton stalk biomass were found as, 12.5, 5.27, 80.22, and 14.51 (%, d.b) respectively. The minimum and maximum value of bio-char in terms of ash content, volatile matter and fixed carbon of bio-char were found as 5.5 to 15.56, 48.02 to 79.48 and 15.02 to 36.40 (%, d.b) respectively. Calorific value of cotton stalk biomass was found as 3685.3 cal /g. The minimum and maximum higher heating value of its bio-char was found as 4622.0 cal/ g and 8101.3 cal/g at 200°C and 60 min and; 500˚C and 240 min temperature and residence time.


2012 ◽  
Vol 614-615 ◽  
pp. 69-72
Author(s):  
Qing Wang ◽  
Na Pei

In this research, experimental samples were from Maoming, Huadian, Wangqing, Fushun and Longkou regions in different layers and different mining area. The experimental results of oil shale proximate analysis and heating value measurement show that there are certain relations between proximate analysis of moisture, ash, fixed carbon, volatile matter and lower heating value. The relations between oil shale lower heating value and proximate analysis have important significance to estimate the average characteristics of oil shale as received and oil shale combustion conditions in boiler.


2011 ◽  
Vol 415-417 ◽  
pp. 1693-1696
Author(s):  
Jarinee Jongpluempiti ◽  
Kiatfa Tangchaichit

Cassava is one of the most important crops in Nakhon Ratchasima province which grows the most cassava in the Northeast of Thailand. Therefore, a large amount of cassava rhizome is left in the field after harvest. The objectives of this research were to study the potential of using residue biomass from the cassava crop i.e. cassava rhizomes. The physical properties and heating value of the cassava rhizomes were evaluated and compared with perennials. The analysis consisted of proximate analysis to measure moisture content, ash, volatile matter and fixed carbon. Heating values were measured using the IKA*C5003 automatic bomb calorimeter. The results were that for high moisture content of about 49-52% the cassava rhizomes had properties inferior to the perennials. When the moisture content of the rhizomes was reduced until around 12%, the properties were equivalent to those of wood samples that had about 2% moisture content. The proximate analyses gave ash 1.8-2.8%, volatile matter 72-75% and fixed carbon 9-13%. Moreover, its average heating values were around 17.08 MJ/kg, while the wood samples were around 17.78 MJ/kg. It appears that cassava rhizome has a high potential as an energy source. Using it to replace wood fuel is possible but it is necessary to reduce the moisture content to an appropriate level.


Author(s):  
Ashok Patel ◽  
◽  
Basant Agrawal ◽  
B R Rawal ◽  
◽  
...  

In this study, temperature studies were studied on the production of a product from selected eucalyptus leaving samples. The bio-diesel yield from these samples was further determined using non-model methods and analytical pyrolysis-gas chromatography / mass spectrometry (Py-GC / MS). The fresh eucalyptus leaves were obtained from nearby forest of Godhra (Gujarat), India. Results of the Proximate analysis of eucalyptus leaves powder sample study shows that volatile matter, fixed carbon, ash content and moisture content are 61.70 %, 26.37%, 8.36 % and 3.57%, The results of the basic analysis indicate that the carbon, hydrogen, nitrogen, oxygen, and sulfur content is 89.17%, 7.36%, 1.01%, 1.98% and 0.26%, respectively. The higher heating value (HHV) of the biodiesel obtained from the biomass samples is 32.81 MJ/kg. Chemical composition analysis of Eucalyptus Biodiesel carried out and compared with standards. The study revealed that pyro-fuel is not only used as fuel but also can be purified and used as a commodity in the chemical and processing industries.


2017 ◽  
Vol 25 (5) ◽  
pp. 301-310 ◽  
Author(s):  
Jetsada Posom ◽  
Panmanas Sirisomboon

This research aimed to determine the higher heating value, volatile matter, fixed carbon and ash content of ground bamboo using Fourier transform near infrared spectroscopy as an alternative to bomb calorimetry and thermogravimetry. Bamboo culms used in this study had circumferences ranging from 16 to 40 cm. Model development was performed using partial least squares regression. The higher heating value, volatile matter, fixed carbon and ash content were predicted with coefficients of determination (r2) of 0.92, 0.82, 0.85 and 0.51; root mean square error of prediction (RMSEP) of 122 J g−1, 1.15%, 1.00% and 0.77%; ratio of the standard deviation to standard error of validation (RPD) of 3.66, 2.55, 2.62 and 1.44; and bias of 14.4 J g−1, −0.43%, 0.03% and −0.11%, respectively. This report shows that near infrared spectroscopy is quite successful in predicting the higher heating value, and is usable with screening for the determination of fixed carbon and volatile matter. For ash content, the method is not recommended. The models should be able to predict the properties of bamboo samples which are suitable for achieving higher efficiency for the biomass conversion process.


Konversi ◽  
2015 ◽  
Vol 4 (2) ◽  
pp. 16
Author(s):  
Yuli Ristianingsih ◽  
Ayuning Ulfa ◽  
Rachmi Syafitri K.S

Abstrak-Tandan Kosong Kelapa Sawit merupakan limbah padat hasil produksi Crude Palm Oil (CPO). Setiap 1(satu) ton tandan buah segar dihasilkan 23% limbah padat. Limbah padat ini dapat di konversi menjadi bahan bakar pengganti minyak yaitu briket. Briket bioarang adalah bahan bakar padat yang dapat digunakan sebagai bahan bakar alternatif pengganti bahan bakar yang berasal dari fosil seperti minyak dan gas. Penelitian ini bertujuan untuk mengetahui pengaruh suhu pirolisis terhadap yield bioarang yang dihasilkan dan mengetahui pengaruh konsentrasi perekat kanji (5% w/w, 10% w/w, 15% w/w) terhadap karakteristik briket hasil penelitian (kadar air, volatile matter, kadar abu, fixed carbon, nilai kalor dan laju pembakaran). Penelitian dilakukan dengan metode pirolisis yaitu proses pembakaran bahan baku dalam reaktor pirolisis dengan menggunakan suhu yang tinggi dan tanpa atau dengan sedikit oksigen. Pirolisis dilakukan selama 2,5 jam dengan variasi suhu yaitu 350°C, 400°C, 450°C dan 500°C. Arang yang dihasilkan dicampur dengan perekat sesuai variasi dan dicetak menjadi briket. Briket kemudian dianalisa kadar air, kadar abu, kadar karbon, kadar zat terbang, nilai kalor dan laju pembakaran. Briket dengan yield tertinggi terdapat pada suhu 350°C sebesar 51,53% dan yield terendah pada suhu 500°C sebesar 26,03%. Briket hasil penelitian ini telah memenuhi standar mutu briket sebagai bahan bakar dilihat dari nilai kalor. Komposisi optimal antara perekat kanji dan arang TKKS hasil pirolisis yaitu pada 5%:95% yang menghasilkan nilai kalor terbesar yaitu 6748,15kal/g.  Kata kunci : Briket Bioarang, Pirolisis, Tandan Kosong Kelapa Sawit                Abstract-Palm Oil Empty Fruit Bunches are solid waste from Crude Palm Oil (CPO industry). For 1 ton of fresh fruit bunches produced 23% of solid waste. This solid waste can be converted into alternative energy that called briquettes. Briquettes are solid fuel that can be used as an alternative fuel replacement for fossil fuels such as oil and gas. This study aims to determine the effect of temperature on the yield generated briquettes and the effect of stach adhesive concentration (5, 10 and 15% wt) to briquettes characteristics (moisture content, volatile matter, ash content, fixed carbon, calorific value and the rate of combustion). In this reseacrh, two kilograms of palm oil empty fruit bunches was burned using pyrolisis reactor at different temperatur (350, 400, 450 and 5000C) for 2.5 hour. Charcoal produced was mixed with an adhesive in accordance variations and molded into briquettes. Briquettes then analyzed the water content, ash content, carbon content, volatile matter content, heating value and rate of combustion. The maximum yield of briquettes which was obtained in this research is 51.53% at temperature 3500C and the lowest yield at temperature of 500 ° C by 26.03%. Briquettes results of this study have met the quality standards of fuel briquettes as seen from the heating value. Optimal adhesive composition between starch and charcoal TKKS is 5%: 95% that generates highest calorific value about 6748.15kal/ g. Keywords: Briquette Bioarang, Pyrolysis, oil palm empty bunches


2015 ◽  
Vol 10 (1) ◽  
pp. 343-349 ◽  
Author(s):  
Dobariya Umesh ◽  
P Sarsavadiya ◽  
Krishna Vaja ◽  
Khardiwar Mahadeo

The study was undertaken to investigate the properties of cotton stalk fuel from the agricultural residues. The whole cotton stalk plant is converted into shredded material with the help of cotton stalk shredder. The capacity of cotton stalk shredder machine is 218 kg/h. The proximate analysis of the shredded cotton stalk in terms of bulk density 34.92 kg / m3 moisture content 13.63 %, volatile matter 74.52 %, ash content (4.95 %, fixed carbon 20.53 % and calorific value of cotton stalk biomass (3827 cal/g) respectively. were showed that agricultural residues are the most potential and their quantitative availability, Since the aim by using shredded cotton stalk as feed stock for energy conversion process of the developed gasifier.


2021 ◽  
Vol 4 (2) ◽  
pp. 133-137
Author(s):  
Muhammad Iqbal Ahmad ◽  
Mohd Sukhairi Mat Rasat ◽  
Shahril Nizam Mohamed Soid ◽  
Mazlan Mohamed ◽  
Zairi Ismael Rizman ◽  
...  

In this study, torrefaction via microwave irradiation was introduced towards oil palm empty fruit bunches (EFB) samples. The samples of 10 g was fed into the quartz type crucible inside the microwave with the power input limit to 385 W. Continous nitrogen up to 50 ml/min were induced and promoted the non oxidative atmosphere in the closed crucible. This proved the increased of energy properties as high 23.6 MJ/kg for torrefied samples comparable to raw 14.8 MJ/kg. On the result of proximate analysis, fixed carbon shows the increase trends whereby the volatile matter decreased. Torrefaction has been found to improve the energy properties of oil palm EFB biomass as a fuel.


2020 ◽  
Vol 6 (3) ◽  
pp. 197-204
Author(s):  
Rafi Maulana ◽  
Ordas Dewanto ◽  
A Raka Abriyansyah

Indonesia as a country that has ample large coal reserves spread across the Sumatera and Kalimantan islands. The huge potential in the region needs further research to be able to find out the quality and excellence of coal resources in order to know the characteristics in detail, then the research was carried out in the Bengkulu Province area by testing coal sample based on Proximate analysis to obtain accurate coal quality results and analysis of coal characteristics in the area can be carried out. The results show that the coal seams in the Arantiga mine have an average value Inherent Moisture is worth 7.49 %, ASH is worth 9.82 %, Volatile Matter is worth 40.99 %, Fixed Carbon is worth 41.70 %, Total Sulfur is worth 0.34 %, Gross Caloric Value is worth 6305 kcal/kg and including of High Volatile A Bituminous coal type, while the Seluang mine has an average value Inherent Moisture is worth 2.07 %, ASH is worth 22.92 %, Volatile Matter is worth 20.26 %, Fixed Carbon is worth 54.78 %, Total Sulfur is worth 0.55 %, Gross Caloric Value is worth 6365 kcal/kg dan and including of Medium Volatile Bituminous coal type.


Sign in / Sign up

Export Citation Format

Share Document