High-speed InGaP/GaAs heterojunction bipolar transistors with buried SiO2 using WSi as the base electrode

1997 ◽  
Vol 18 (4) ◽  
pp. 154-156 ◽  
Author(s):  
T. Oka ◽  
K. Ouchi ◽  
H. Uchiyama ◽  
T. Taniguchi ◽  
K. Mochizuki ◽  
...  
2001 ◽  
Vol 11 (01) ◽  
pp. 115-136 ◽  
Author(s):  
TOHRU OKA ◽  
KOJI HIRATA ◽  
HIDEYUKI SUZUKI ◽  
KIYOSHI OUCHI ◽  
HIROYUKI UCHIYAMA ◽  
...  

Small-scale InGaP/GaAs heterojunction bipolar transistors (HBTs) with high-speed as well as low-current operation are demonstrated. To reduce the emitter size SE and the base-collector capacitance CBC simultaneously, the HBTs are fabricated by using WSi/Ti as the base electrode and by burying SiO 2 in the extrinsic collector region. WSi/Ti metals simplify and facilitate processing to fabricate small base electrodes, and the buried SiO 2 reduces the parasitic CBC under the base electrode. The cutoff frequency fT of 156 GHz and the maximum oscillation frequency f max of 255 GHz were obtained at a collector current Ic of 3.5 mA for the HBT with SE of 0.5 μ m ×4.5 μ m , and fT of 114 GHz and f max of 230 GHz were obtained at IC of 0.9 mA for the HBT with SE of 0.25 μ m ×1.5 μ m . A 1/8 static frequency divider operated at a maximum toggle frequency of 39.5 GHz with a power consumption per flip-flop of 190 mW. A transimpedance amplifier provides a gain of 46.5 dB·Ω with a bandwidth of 41.6 GHz at a power consumption of 150 mW. These results indicate the great potential of our HBTs for high-speed. low power integrated circuit applications.


Author(s):  
N. David Theodore ◽  
Donald Y.C Lie ◽  
J. H. Song ◽  
Peter Crozier

SiGe is being extensively investigated for use in heterojunction bipolar-transistors (HBT) and high-speed integrated circuits. The material offers adjustable bandgaps, improved carrier mobilities over Si homostructures, and compatibility with Si-based integrated-circuit manufacturing. SiGe HBT performance can be improved by increasing the base-doping or by widening the base link-region by ion implantation. A problem that arises however is that implantation can enhance strain-relaxation of SiGe/Si.Furthermore, once misfit or threading dislocations result, the defects can give rise to recombination-generation in depletion regions of semiconductor devices. It is of relevance therefore to study the damage and anneal behavior of implanted SiGe layers. The present study investigates the microstructural behavior of phosphorus implanted pseudomorphic metastable Si0.88Ge0.12 films on silicon, exposed to various anneals.Metastable pseudomorphic Si0.88Ge0.12 films were grown ~265 nm thick on a silicon wafer by molecular-beam epitaxy. Pieces of this wafer were then implanted at room temperature with 100 keV phosphorus ions to a dose of 1.5×1015 cm-2.


1987 ◽  
Vol 34 (11) ◽  
pp. 2369-2369 ◽  
Author(s):  
K. Nagata ◽  
O. Nakajima ◽  
Y. Yamauchi ◽  
H. Ito ◽  
T. Nittono ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document