Study of sol-gel type ceria particle for CMP process in leading-edge CMOS device: YE: Yield enhancement/learning

Author(s):  
Dinesh Kumar Penigalapati ◽  
Ji Chul Yang ◽  
Amarnath Jha ◽  
Tai Fong Chao ◽  
Dinesh Koli
Nanomaterials ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 739 ◽  
Author(s):  
Mehrez E. El-Naggar ◽  
Nader R. Abdelsalam ◽  
Moustafa M.G. Fouda ◽  
Marwa I. Mackled ◽  
Malik A.M. Al-Jaddadi ◽  
...  

Maize is considered one of the most imperative cereal crops worldwide. In this work, high throughput silica nanoparticles (SiO2-NPs) were prepared via the sol–gel technique. SiO2-NPs were attained in a powder form followed by full analysis using the advanced tools (UV-vis, HR-TEM, SEM, XRD and zeta potential). To this end, SiO2-NPs were applied as both nanofertilizer and pesticide against four common pests that infect the stored maize and cause severe damage to crops. As for nanofertilizers, the response of maize hybrid to mineral NPK, “Nitrogen (N), Phosphorus (P), and Potassium (K)” (0% = untreated, 50% of recommended dose and 100%), with different combinations of SiO2-NPs; (0, 2.5, 5, 10 g/kg soil) was evaluated. Afterward, post-harvest, grains were stored and fumigated with different concentrations of SiO2-NPs (0.0031, 0.0063. 0.25, 0.5, 1.0, 2.0, 2.5, 5, 10 g/kg) in order to identify LC50 and mortality % of four common insects, namely Sitophilus oryzae, Rhizopertha dominica, Tribolium castaneum, and Orizaephilus surinamenisis. The results revealed that, using the recommended dose of 100%, mineral NPK showed the greatest mean values of plant height, chlorophyll content, yield, its components, and protein (%). By feeding the soil with SiO2-NPs up to 10 g/kg, the best growth and yield enhancement of maize crop is noticed. Mineral NPK interacted with SiO2-NPs, whereas the application of mineral NPK at the rate of 50% with 10 g/kg SiO2-NPs, increased the highest mean values of agronomic characters. Therefore, SiO2-NPs can be applied as a growth promoter, and in the meantime, as strong unconventional pesticides for crops during storage, with a very small and safe dose.


2020 ◽  
Vol 88 (8) ◽  
Author(s):  
Deepak Krishnan ◽  
Sudip Kumar Ghosh

ABSTRACT Entamoeba histolytica and its reptilian counterpart and encystation model Entamoeba invadens formed a polarized monopodial morphology when treated with pentoxifylline. This morphology was propelled by retrograde flow of the cell surface resulting from a cyclic sol-gel conversion of cytoplasm and a stable bleb at the leading edge. Pentoxifylline treatment switched the unpolarized, adherent trophozoites to the nonadherent, stable bleb-driven form and altered the motility pattern from slow and random to fast, directionally persistent, and highly chemotactic. Interestingly, exogenously added adenosine produced multiple protrusions and random motility, an opposite phenotype to that of pentoxifylline. Thus, pentoxifylline, an adenosine antagonist, may be inducing the monopodial morphology by preventing lateral protrusions and restricting the leading edge to one site. The polarized form of E. invadens was aggregation competent, and time-lapse microscopy of encystation revealed its appearance during early hours, mediating the cell aggregation by directional cell migration. The addition of purine nucleotides to in vitro encystation culture prevented the formation of polarized morphology and inhibited the cell aggregation and, thus, the encystation, which further showed the importance of the polarized form in the Entamoeba life cycle. Cell polarity and motility are essential in the pathogenesis of Entamoeba parasites, and the stable bleb-driven polarized morphology of Entamoeba may also be important in invasive amoebiasis.


2013 ◽  
Vol 2013 (CICMT) ◽  
pp. 000059-000068
Author(s):  
Byron Caudle ◽  
Michael Baginski ◽  
Michael Hamilton

The generation and transmission of relatively short duration, broadband, peak pulse power bursts has numerous applications in the communications and defense sectors. In the past, nonlinear transmission lines (NLTLs) have been used to create such broadband pulses. While most NLTL designs are based on nonlinear capacitors or inductors arranged in a ladder network, the method presented here replaces the transmission line with a novel ferroelectric filled waveguide. When a large transient voltage is input to the guide the resulting electric field will cause the polarization field to move into the saturation region. This reduces the effective dielectric permittivity and thus the group velocity of the peak power portion of the wave is faster than all other portions of the pulse. This results in the middle portion of the pulse overtaking the leading edge and “piling-up” energy at the front edge of the pulse, creating what appears to be a temporal compression of the leading edge. The temporal compression results in increased harmonic spectral content. The simulated NLTLs can be fabricated using Substrate Integrated Waveguides (SIW) in low temperature cofired ceramics (LTCC). Closely spaced vias form trenches in the waveguide that are used to create space for the nonlinear dielectric and the trenches are filled with ferroelectric materials using a sol-gel method. The trench dimensions and type of ferroelectric fill material for each layer are determined using a genetic algorithm optimization routine that produces a maximum rise time compression of the input pulse.


Author(s):  
George C. Ruben ◽  
Merrill W. Shafer

Traditionally ceramics have been shaped from powders and densified at temperatures close to their liquid point. New processing methods using various types of sols, gels, and organometallic precursors at low temperature which enable densificatlon at elevated temperatures well below their liquidus, hold the promise of producing ceramics and glasses of controlled and reproducible properties that are highly reliable for electronic, structural, space or medical applications. Ultrastructure processing of silicon alkoxides in acid medium and mixtures of Ludox HS-40 (120Å spheres from DuPont) and Kasil (38% K2O &62% SiO2) in basic medium have been aimed at producing materials with a range of well defined pore sizes (∼20-400Å) to study physical phenomena and materials behavior in well characterized confined geometries. We have studied Pt/C surface replicas of some of these porous sol-gels prepared at temperatures below their glass transition point.


Author(s):  
V. Kaushik ◽  
P. Maniar ◽  
J. Olowolafe ◽  
R. Jones ◽  
A. Campbell ◽  
...  

Lead zirconium titanate films (Pb (Zr,Ti) O3 or PZT) are being considered for potential application as dielectric films in memory technology due to their high dielectric constants. PZT is a ferroelectric material which shows spontaneous polarizability, reversible under applied electric fields. We report herein some results of TEM studies on thin film capacitor structures containing PZT films with platinum-titanium electrodes.The wafers had a stacked structure consisting of PZT/Pt/Ti/SiO2/Si substrate as shown in Figure 1. Platinum acts as electrode material and titanium is used to overcome the problem of platinum adhesion to the oxide layer. The PZT (0/20/80) films were deposited using a sol-gel method and the structure was annealed at 650°C and 800°C for 30 min in an oxygen ambient. XTEM imaging was done at 200KV with the electron beam parallel to <110> zone axis of silicon.Figure 2 shows the PZT and Pt layers only, since the structure had a tendency to peel off at the Ti-Pt interface during TEM sample preparation.


Author(s):  
J.M. Schwartz ◽  
L.F. Francis ◽  
L.D. Schmidt ◽  
P.S. Schabes-Retchkiman

Ceramic thin films and coatings are of interest for electrical, optical, magnetic and thermal barrier applications. Critical for improved properties in thin films is the development of specific microstructures during processing. To this end, the sol-gel method is advantageous as a versatile processing route. The sol-gel process involves depositing a solution containing metalorganic or colloidal ceramic precursors onto a substrate and heating the deposited layer to form a crystalline or non-crystalline ceramic coating. This route has several advantages, including the ability to create tailored microstructures and properties, to coat large or small areas, simple or complex shapes, and to more easily prepare multicomponent ceramics. Sol-gel derived coatings are amorphous in the as-deposited state and develop their crystalline structure and microstructure during heat-treatment. We are particularly interested in studying the amorphous to crystalline transformation, because many key features of the microstructure such as grain size and grain size distribution may be linked to this transformation.


Author(s):  
P. G. Kotula ◽  
D. D. Erickson ◽  
C. B. Carter

High-resolution field-emission-gun scanning electron microscopy (FESEM) has recently emerged as an extremely powerful method for characterizing the micro- or nanostructure of materials. The development of high efficiency backscattered-electron detectors has increased the resolution attainable with backscattered-electrons to almost that attainable with secondary-electrons. This increased resolution allows backscattered-electron imaging to be utilized to study materials once possible only by TEM. In addition to providing quantitative information, such as critical dimensions, SEM is more statistically representative. That is, the amount of material that can be sampled with SEM for a given measurement is many orders of magnitude greater than that with TEM.In the present work, a Hitachi S-900 FESEM (operating at 5kV) equipped with a high-resolution backscattered electron detector, has been used to study the α-Fe2O3 enhanced or seeded solid-state phase transformations of sol-gel alumina and solid-state reactions in the NiO/α-Al2O3 system. In both cases, a thin-film cross-section approach has been developed to facilitate the investigation. Specifically, the FESEM allows transformed- or reaction-layer thicknesses along interfaces that are millimeters in length to be measured with a resolution of better than 10nm.


Author(s):  
J. Tong ◽  
L. Eyring

There is increasing interest in composites containing zirconia because of their high strength, fracture toughness, and its great influence on the chemical durability in glass. For the zirconia-silica system, monolithic glasses, fibers and coatings have been obtained. There is currently a great interest in designing zirconia-toughened alumina including exploration of the processing methods and the toughening mechanism.The possibility of forming nanocrystal composites by a phase separation method has been investigated in three systems: zirconia-alumina, zirconia-silica and zirconia-titania using HREM. The morphological observations initially suggest that the formation of nanocrystal composites by a phase separation method is possible in the zirconia-alumina and zirconia-silica systems, but impossible in the zirconia-titania system. The separation-produced grain size in silica-zirconia system is around 5 nm and is more uniform than that in the alumina-zirconia system in which the sizes of the small polyhedron grains are around 10 nm. In the titania-zirconia system, there is no obvious separation as was observed in die alumina-zirconia and silica-zirconia system.


Author(s):  
R. T. Chen ◽  
R.A. Norwood

Sol-gel processing has been used to control the structure of a material on a nanometer scale in preparing advanced ceramics and glasses. Film coating using the sol-gel process was also found to be a viable process technology in applications such as optical, porous, antireflection and hard coatings. In this study, organically modified silicate (Ormosil) coatings are applied to PET films for various industrial applications. Sol-gel materials are known to exhibit nanometer scale structures which havepreviously been characterized by small-angle X-ray scattering (SAXS), neutron scattering and light scattering. Imaging of the ultrafine sol-gel structures has also been performed using an ultrahigh resolution replica/TEM technique. The objective of this study was to evaluate the ultrafine structures inthe sol gel coatings using a direct imaging technique: atomic force microscopy (AFM). In addition, correlation of microstructures with processing parameters, coating density and other physical properties will be discussed.The materials evaluated are organically modified silicate coatings on PET film substrates. Refractive index measurement by the prism coupling method was used to assess density of the sol-gel coating.AFM imaging was performed on a Nanoscope III AFM (by Digital Instruments) using constant force mode. Solgel coating samples coated with a thin layer of Ft (by ion beam sputtering) were also examined by STM in order to confirm the structures observed in the contact type AFM. In addition, to compare the previous results, sol-gel powder samples were also prepared by ultrasonication followed by Pt/Au shadowing and examined using a JEOL 100CX TEM.


Sign in / Sign up

Export Citation Format

Share Document